
'
&

$
%

CIS 500

Software Foundations

Fall 2002

25 September

CIS 500, 25 September 1

'
&

$
%

The Pure Lambda Calculus

CIS 500, 25 September 2

'
&

$
%

Syntax

t ::= terms:

x variable

�x.t abstraction

t t application

CIS 500, 25 September 3

'
&

$
%

Values

v ::= values:

�x.t abstraction value

CIS 500, 25 September 4



'
&

$
%

Operational Semantics

Computation rule:

(�x.t12) v2 �! [x 7! v2]t12 (E-APPABS)

[x 7! v2]t12 is “the term that results from substituting occurrences

of x in t12 with v2.”

CIS 500, 25 September 5

'
&

$
%

Operational Semantics

Computation rule:

(�x.t12) v2 �! [x 7! v2]t12 (E-APPABS)

[x 7! v2]t12 is “the term that results from substituting occurrences

of x in t12 with v2.”

Congruence rules:

t1 �! t 0
1

t1 t2 �! t 0
1 t2

(E-APP1)

t2 �! t 0
2

v1 t2 �! v1 t 0
2

(E-APP2)

CIS 500, 25 September 5-a

'
&

$
%

Terminology

A term of the form (�x.t) v — that is, a �-abstraction applied to a

value — is called a redex (from “reducible expression”).

CIS 500, 25 September 6

'
&

$
%

Alternative evaluation strategies

The evaluation strategy we have chosen — called call by value — reflects

standard conventions found in most mainstream languages.

Some other common ones:

� Full beta-reduction

� Normal order (leftmost/outermost)
� Call by name (cf. Haskell)

CIS 500, 25 September 7



'
&

$
%

Programming in the Lambda-Calculus

CIS 500, 25 September 8

'
&

$
%

Multiple arguments

On Monday, we wrote a function double that returns a function as an

argument.

double = �f. �y. f (f y)

This idiom — a �-abstraction that does nothing but immediately yield

another abstraction — is very common in the �-calculus.

In general, �x. �y. t is a function that, given a value v for x, yields a

function that, given a value u for y, yields t with v in place of x and u in

place of y.

That is, �x. �y. t is a two-argument function.

CIS 500, 25 September 9

'
&

$
%

Aside: Currying

The transformation from a function taking a pair of arguments (in a

language like OCaml that provides pairs) to a one-argument function

returning another one-argument function is called currying.

It is considered good style in OCaml to define functions in curried style

whenever possible.

CIS 500, 25 September 10

'
&

$
%

Syntactic conventions

Since �-calculus provides only one-argument functions, all multi-argument

functions must be written in curried style.

The following conventions make the linear forms of terms easier to read

and write:

� Application associates to the left

� Bodies of �- abstractions extend as far to the right as possible

CIS 500, 25 September 11



'
&

$
%

The “Church Booleans”

tru = �t. �f. t

fls = �t. �f. f

tru v w

= (�t.�f.t) v w by definition

�! (�f. v) w reducing the underlined redex

�! v reducing the underlined redex

fls v w

= (�t.�f.f) v w by definition

�! (�f. f) w reducing the underlined redex

�! w reducing the underlined redex

CIS 500, 25 September 12

'
&

$
%

Functions on Booleans

not = �b. b fls tru

That is, not is a function that, given a boolean value v, returns fls if v is

tru and tru if v is fls.

CIS 500, 25 September 13

'
&

$
%

Functions on Booleans

and = �b. �c. b c fls

That is, and is a function that, given two boolean values v and w, returns

w if v is tru and fls if v is fls

Thus and v w yields tru if both v and w are tru and fls if either v or w

is fls.

CIS 500, 25 September 14

'
&

$
%

Pairs

pair = �f.�s.�b. b f s

fst = �p. p tru

snd = �p. p fls

That is, pair v w is a function that, when applied to a boolean value b,

applies b to v and w.

By the definition of booleans, this application yields v if b is tru and w if b

is fls, so the first and second projection functions fst and snd can be

implemented simply by supplying the appropriate boolean.

CIS 500, 25 September 15



'
&

$
%

Example

fst (pair v w)

= fst ((�f. �s. �b. b f s) v w) by definition

�! fst ((�s. �b. b v s) w) reducing the underlined redex

�! fst (�b. b v w) reducing the underlined redex

= (�p. p tru) (�b. b v w) by definition

�! (�b. b v w) tru reducing the underlined redex

�! tru v w reducing the underlined redex

�!

�

v as before.

CIS 500, 25 September 16

'
&

$
%

Church numerals

Idea: represent the number n by a function that “repeats some action n

times.”

c0 = �s. �z. z

c1 = �s. �z. s z

c2 = �s. �z. s (s z)

c3 = �s. �z. s (s (s z))

That is, each number n is represented by a term cn that takes two

arguments, s and z (for “successor” and “zero”), and applies s, n times,

to z.

CIS 500, 25 September 17

'
&

$
%

Functions on Church Numerals

Successor:

CIS 500, 25 September 18

'
&

$
%

Functions on Church Numerals

Successor:

scc = �n. �s. �z. s (n s z)
CIS 500, 25 September 18-a



'
&

$
%

Functions on Church Numerals

Successor:
scc = �n. �s. �z. s (n s z)

Addition:

CIS 500, 25 September 18-b

'
&

$
%

Functions on Church Numerals

Successor:

scc = �n. �s. �z. s (n s z)

Addition:

plus = �m. �n. �s. �z. m s (n s z)

CIS 500, 25 September 18-c

'
&

$
%

Functions on Church Numerals

Successor:

scc = �n. �s. �z. s (n s z)

Addition:

plus = �m. �n. �s. �z. m s (n s z)

Multiplication:

CIS 500, 25 September 18-d

'
&

$
%

Functions on Church Numerals

Successor:

scc = �n. �s. �z. s (n s z)

Addition:

plus = �m. �n. �s. �z. m s (n s z)

Multiplication:

times = �m. �n. m (plus n) c0
CIS 500, 25 September 18-e



'
&

$
%

Functions on Church Numerals

Successor:
scc = �n. �s. �z. s (n s z)

Addition:

plus = �m. �n. �s. �z. m s (n s z)

Multiplication:

times = �m. �n. m (plus n) c0

Zero test:

CIS 500, 25 September 18-f

'
&

$
%

Functions on Church Numerals

Successor:

scc = �n. �s. �z. s (n s z)

Addition:

plus = �m. �n. �s. �z. m s (n s z)

Multiplication:

times = �m. �n. m (plus n) c0

Zero test:

iszro = �m. m (�x. fls) tru

CIS 500, 25 September 18-g

'
&

$
%

Functions on Church Numerals

Successor:

scc = �n. �s. �z. s (n s z)

Addition:

plus = �m. �n. �s. �z. m s (n s z)

Multiplication:

times = �m. �n. m (plus n) c0

Zero test:

iszro = �m. m (�x. fls) tru

What about predecessor?

CIS 500, 25 September 18-h

'
&

$
%

Predecessor

zz = pair c0 c0

ss = �p. pair (snd p) (scc (snd p))

CIS 500, 25 September 19



'
&

$
%

Predecessor

zz = pair c0 c0

ss = �p. pair (snd p) (scc (snd p))

prd = �m. fst (m ss zz)

CIS 500, 25 September 19-a

'
&

$
%

Normal forms

A normal form is a term that cannot take an evaluation step.

A stuck term is a normal form that is not a value.

Are there any stuck terms in the pure �-calculus?

Prove it.

CIS 500, 25 September 20

'
&

$
%

Normal forms

A normal form is a term that cannot take an evaluation step.

A stuck term is a normal form that is not a value.

Are there any stuck terms in the pure �-calculus?

Prove it.

Does every term evaluate to a normal form?

Prove it.

CIS 500, 25 September 20-a

'
&

$
%

Divergence

omega = (�x. x x) (�x. x x)

Note that omega evaluates in one step to itself!

So evaluation of omega never reaches a normal form: it diverges.

CIS 500, 25 September 21



'
&

$
%

Divergence

omega = (�x. x x) (�x. x x)

Note that omega evaluates in one step to itself!

So evaluation of omega never reaches a normal form: it diverges.

Being able to write a divergent computation does not seem very useful in

itself. However, there are variants of omega that are very useful...

CIS 500, 25 September 21-a

'
&

$
%

Iterated Application

Suppose f is some �-abstraction, and consider the following term:

Yf = (�x. f (x x)) (�x. f (x x))

CIS 500, 25 September 22

'
&

$
%

Iterated Application

Suppose f is some �-abstraction, and consider the following term:

Yf = (�x. f (x x)) (�x. f (x x))

Now the “pattern of divergence” becomes more interesting:

Yf
=

(�x. f (x x)) (�x. f (x x))

�!

f ((�x. f (x x)) (�x. f (x x)))

�!

f (f ((�x. f (x x)) (�x. f (x x))))

�!

f (f (f ((�x. f (x x)) (�x. f (x x)))))

�!
� � �

CIS 500, 25 September 22-a

'
&

$
%

Yf is still not very useful, since (like omega), all it does is diverge.

Is there any way we could “slow it down”?

CIS 500, 25 September 23



'
&

$
%

Delaying Divergence

poisonpill = �y. omega

Note that poisonpill is a value — it it will only diverge when we actually

apply it to an argument. This means that we can safely pass it as an

argument to other functions, return it as a result from functions, etc.

(�p. fst (pair p fls) tru) poisonpill

�!

fst (pair poisonpill fls) tru

�!

�

poisonpill tru

�!

omega

�!
� � �

CIS 500, 25 September 24

'
&

$
%

A delayed variant of omega

Here is a variant of omega in which the delay and divergence are a bit

more tightly intertwined:

omegav = �y. (�x. (�y. x x y)) (�x. (�y. x x y)) y

Note that omegav is a normal form. However, if we apply it to any

argument v, it diverges:

omegav v

=

(�y. (�x. (�y. x x y)) (�x. (�y. x x y)) y) v

�!

(�x. (�y. x x y)) (�x. (�y. x x y)) v

�!

(�y. (�x. (�y. x x y)) (�x. (�y. x x y)) y) v

=

omegav v

CIS 500, 25 September 25

'
&

$
%

Another delayed variant

Suppose f is a function. Define

Zf = �y. (�x. f (�y. x x y)) (�x. f (�y. x x y)) y

This term combines the “added f” from Yf with the “delayed divergence”

of omegav.

CIS 500, 25 September 26

'
&

$
%

If we now apply Zf to an argument v, something interesting happens:

Zf v
=

(�y. (�x. f (�y. x x y)) (�x. f (�y. x x y)) y) v

�!

(�x. f (�y. x x y)) (�x. f (�y. x x y)) v

�!

f (�y. (�x. f (�y. x x y)) (�x. f (�y. x x y)) y) v

=

f Zf v

Since Zf and v are both values, the next computation step will be the

reduction of f Zf — that is, before we “diverge,” f gets to do some

computation.

Now we are getting somewhere.

CIS 500, 25 September 27



'
&

$
%

Recursion

Let

f = �fct.

�n.
if n=0 then 1

else n * (fct (pred n))

f looks just the ordinary factorial function, except that, in place of a

recursive call in the last time, it calls the function fct, which is passed as

a parameter.

N.b.: for brevity, this example uses “real” numbers and booleans, infix

syntax, etc...

CIS 500, 25 September 28

'
&

$
%

We can use Z to “tie the knot” in the definition of f and obtain a real

recursive factorial function:

Zf 3

�!

�

f Zf 3

=

(�fct. �n. ...) Zf 3

�! �!

if 3=0 then 1 else 3 * (Zf (pred 3))

�!

�

3 * (Zf (pred 3)))

�!

3 * (Zf 2)

�!

�

3 * (f Zf 2)

� � �

CIS 500, 25 September 29

'
&

$
%

A Generic Z

If we define

Z = �f. Zf

i.e.,

Z = �f. �y. (�x. f (�y. x x y)) (�x. f (�y. x x y)) y

then we can obtain the behavior of Zf for any f we like, simply by

applying Z to f.

Z f �! Zf

CIS 500, 25 September 30

'
&

$
%

N.b.:

The term Z here is essentially the same as the fix discussed the book.

Z = �f. �y. (�x. f (�y. x x y)) (�x. f (�y. x x y)) y

fix = �f. (�x. f (�y. x x y)) (�x. f (�y. x x y))

Z is hopefully slightly easier to understand, since it has the property that

Z f v �!
�

f (Z f) v , which fix does not (quite) share.

CIS 500, 25 September 31


