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Administrivia

� Exams will be graded over the weekend

� HW5??
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Simply typed lambda-calculus with booleans

true : Bool (T-TRUE)

false : Bool (T-FALSE)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T

(T-IF)

x:T 2 �

� ` x : T

(T-VAR)

�; x:T1 ` t2 : T2

� ` �x:T1.t2 : T1!T2

(T-ABS)

� ` t1 : T11!T12 � ` t2 : T11

� ` t1 t2 : T12

(T-APP)
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The Substitution Lemma

[board]
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Intro vs. elim forms

An introduction form for a given type gives us a way of constructing

elements of this type.

An elimination form for a type gives us a way of using elements of this

type.
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The Curry-Howard Correspondence

In constructive logics, a proof of P must provide evidence for P.

� “law of the excluded middle” — P_ :P — not recognized.

A proof of P^Q is a pair of evidence for P and evidence for Q.

A proof of P � Q is a procedure for transforming evidence for P into

evidence for Q.
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Propositions as Types

LOGIC PROGRAMMING LANGUAGES

propositions types

proposition P � Q type P!Q

proposition P^Q type P� Q

proof of proposition P term t of type P

proposition P is provable type P is inhabited (by some term)
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Propositions as Types

LOGIC PROGRAMMING LANGUAGES

propositions types

proposition P � Q type P!Q

proposition P^Q type P� Q

proof of proposition P term t of type P

proposition P is provable type P is inhabited (by some term)

evaluation
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Propositions as Types

LOGIC PROGRAMMING LANGUAGES

propositions types

proposition P � Q type P!Q

proposition P^Q type P� Q

proof of proposition P term t of type P

proposition P is provable type P is inhabited (by some term)

proof simplification evaluation

(cut elimination)
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Erasure

erase(x) = x

erase(�x:T1. t2) = �x. erase(t2)

erase(t1 t2) = erase(t1) erase(t2)
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Typability

An untyped �-term m is said to be typable if there is some term t in the

simply typed lambda-calculus, some type T, and some context � such

that erase(t) = m and � ` t : T.

Cf. type reconstruction in OCaml.
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On to real programming languages...

CIS 500, 16 October 10



'
&

$
%

Base types

Up to now, we’ve formulated “base types” (e.g. Nat) by adding them to

the syntax of types, extending the syntax of terms with associated

constants (zero) and operators (succ, etc.) and adding appropriate typing

and evaluation rules. We can do this for as many base types as we like.

For more theoretical discussions (as opposed to programming) we can

often ignore the term-level inhabitants of base types, and just treat these

types as uninterpreted constants.

E.g., suppose B and C are some base types. Then we can ask (without

knowing anything more about B or C) whether there are any types S and

T such that the term

(�f:S. �g:T. f g) (�x:B. x)

is well typed.
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The Unit type

t ::= ... terms

unit constant unit

v ::= ... values

unit constant unit

T ::= ... types

Unit unit type

New typing rules � ` t : T

� ` unit : Unit (T-UNIT)
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Sequencing

t ::= ... terms

t1;t2
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Sequencing

t ::= ... terms

t1;t2

t1 �! t 0
1

t1;t2 �! t 0
1;t2

(E-SEQ)

unit;t2 �! t2 (E-SEQNEXT)

� ` t1 : Unit � ` t2 : T2

� ` t1;t2 : T2

(T-SEQ)
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Derived forms
� Syntatic sugar

� Internal language vs. external (surface) language
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Sequencing as a derived form

t1;t2

def

= (�x:Unit.t2) t1

where x =2 FV(t2)
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Equivalence of the two definitions

[board]
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Ascription

New syntactic forms

t ::= ... terms

t as T ascription

New evaluation rules t �! t 0

v1 as T �! v1 (E-ASCRIBE)

t1 �! t 0
1

t1 as T �! t 0
1 as T

(E-ASCRIBE1)

New typing rules � ` t : T

� ` t1 : T

� ` t1 as T : T

(T-ASCRIBE)
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Ascription as a derived form

t as T

def

= (�x:T. x) t
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Let-bindings

New syntactic forms

t ::= ... terms

let x=t in t let binding

New evaluation rules t �! t 0

let x=v1 in t2 �! [x 7! v1]t2 (E-LETV)

t1 �! t 0
1

let x=t1 in t2 �! let x=t 0
1 in t2

(E-LET)

New typing rules � ` t : T

� ` t1 : T1 �; x:T1 ` t2 : T2

� ` let x=t1 in t2 : T2

(T-LET)
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Pairs

t ::= ... terms

{t,t} pair

t.1 first projection

t.2 second projection

v ::= ... values

{v,v} pair value

T ::= ... types

T1� T2 product type

CIS 500, 16 October 20

'
&

$
%

Evaluation rules for pairs

{v1,v2}:1 �! v1 (E-PAIRBETA1)

{v1,v2}:2 �! v2 (E-PAIRBETA2)

t1 �! t 0
1

t1.1 �! t 0
1.1

(E-PROJ1)

t1 �! t 0
1

t1.2 �! t 0
1.2

(E-PROJ2)

t1 �! t 0
1

{t1,t2} �! {t 0
1,t2}

(E-PAIR1)

t2 �! t 0
2

{v1,t2} �! {v1,t
0

2}

(E-PAIR2)
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Typing rules for pairs

� ` t1 : T1 � ` t2 : T2

� ` {t1,t2} : T1� T2

(T-PAIR)

� ` t1 : T11� T12

� ` t1.1 : T11

(T-PROJ1)

� ` t1 : T11� T12

� ` t1.2 : T12

(T-PROJ2)
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Tuples

t ::= ... terms

{ti
i21::n} tuple

t.i projection

v ::= ... values

{vi
i21::n} tuple value

T ::= ... types

{Ti
i21::n} tuple type
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Evaluation rules for tuples

{vi
i21::n}.j �! vj (E-PROJTUPLE)

t1 �! t 0
1

t1.i �! t 0
1.i

(E-PROJ)

tj �! t 0
j

{vi
i21::j-1,tj,tk
k2j+1::n}

�! {vi
i21::j-1,t 0

j,tk
k2j+1::n}

(E-TUPLE)
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Typing rules for tuples

for each i � ` ti : Ti

� ` {ti
i21::n} : {Ti
i21::n}

(T-TUPLE)

� ` t1 : {Ti
i21::n}

� ` t1.j : Tj

(T-PROJ)
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Records
t ::= ... terms

{li=ti
i21::n} record

t.l projection

v ::= ... values

{li=vi
i21::n} record value

T ::= ... types

{li:Ti
i21::n} type of records
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Evaluation rules for records

{li=vi
i21::n}.lj �! vj (E-PROJRCD)

t1 �! t 0
1

t1.l �! t 0
1.l

(E-PROJ)

tj �! t 0
j

{li=vi
i21::j-1,lj=tj,lk=tk
k2j+1::n}

�! {li=vi
i21::j-1,lj=t
0

j,lk=tk
k2j+1::n}

(E-RCD)
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Typing rules for records

for each i � ` ti : Ti

� ` {li=ti
i21::n} : {li:Ti
i21::n}

(T-RCD)

� ` t1 : {li:Ti
i2 1::n}

� ` t1.lj : Tj

(T-PROJ)
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