
'
&

$
%

CIS 500

Software Foundations

Fall 2002

16 October

CIS 500, 16 October 1

'
&

$
%

Administrivia

� Exams will be graded over the weekend

� HW5??

CIS 500, 16 October 2

'
&

$
%

Simply typed lambda-calculus with booleans

true : Bool (T-TRUE)

false : Bool (T-FALSE)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T

(T-IF)

x:T 2 �

� ` x : T

(T-VAR)

�; x:T1 ` t2 : T2

� ` �x:T1.t2 : T1!T2

(T-ABS)

� ` t1 : T11!T12 � ` t2 : T11

� ` t1 t2 : T12

(T-APP)

CIS 500, 16 October 3

'
&

$
%

The Substitution Lemma

[board]

CIS 500, 16 October 4



'
&

$
%

Intro vs. elim forms

An introduction form for a given type gives us a way of constructing

elements of this type.

An elimination form for a type gives us a way of using elements of this

type.

CIS 500, 16 October 5

'
&

$
%

The Curry-Howard Correspondence

In constructive logics, a proof of P must provide evidence for P.

� “law of the excluded middle” — P_ :P — not recognized.

A proof of P^Q is a pair of evidence for P and evidence for Q.

A proof of P � Q is a procedure for transforming evidence for P into

evidence for Q.

CIS 500, 16 October 6

'
&

$
%

Propositions as Types

LOGIC PROGRAMMING LANGUAGES

propositions types

proposition P � Q type P!Q

proposition P^Q type P� Q

proof of proposition P term t of type P

proposition P is provable type P is inhabited (by some term)

CIS 500, 16 October 7

'
&

$
%

Propositions as Types

LOGIC PROGRAMMING LANGUAGES

propositions types

proposition P � Q type P!Q

proposition P^Q type P� Q

proof of proposition P term t of type P

proposition P is provable type P is inhabited (by some term)

evaluation

CIS 500, 16 October 7-a



'
&

$
%

Propositions as Types

LOGIC PROGRAMMING LANGUAGES

propositions types

proposition P � Q type P!Q

proposition P^Q type P� Q

proof of proposition P term t of type P

proposition P is provable type P is inhabited (by some term)

proof simplification evaluation

(cut elimination)

CIS 500, 16 October 7-b

'
&

$
%

Erasure

erase(x) = x

erase(�x:T1. t2) = �x. erase(t2)

erase(t1 t2) = erase(t1) erase(t2)

CIS 500, 16 October 8

'
&

$
%

Typability

An untyped �-term m is said to be typable if there is some term t in the

simply typed lambda-calculus, some type T, and some context � such

that erase(t) = m and � ` t : T.

Cf. type reconstruction in OCaml.

CIS 500, 16 October 9

'
&

$
%

On to real programming languages...

CIS 500, 16 October 10



'
&

$
%

Base types

Up to now, we’ve formulated “base types” (e.g. Nat) by adding them to

the syntax of types, extending the syntax of terms with associated

constants (zero) and operators (succ, etc.) and adding appropriate typing

and evaluation rules. We can do this for as many base types as we like.

For more theoretical discussions (as opposed to programming) we can

often ignore the term-level inhabitants of base types, and just treat these

types as uninterpreted constants.

E.g., suppose B and C are some base types. Then we can ask (without

knowing anything more about B or C) whether there are any types S and

T such that the term

(�f:S. �g:T. f g) (�x:B. x)

is well typed.

CIS 500, 16 October 11

'
&

$
%

The Unit type

t ::= ... terms

unit constant unit

v ::= ... values

unit constant unit

T ::= ... types

Unit unit type

New typing rules � ` t : T

� ` unit : Unit (T-UNIT)

CIS 500, 16 October 12

'
&

$
%

Sequencing

t ::= ... terms

t1;t2

CIS 500, 16 October 13

'
&

$
%

Sequencing

t ::= ... terms

t1;t2

t1 �! t 0
1

t1;t2 �! t 0
1;t2

(E-SEQ)

unit;t2 �! t2 (E-SEQNEXT)

� ` t1 : Unit � ` t2 : T2

� ` t1;t2 : T2

(T-SEQ)

CIS 500, 16 October 13-a



'
&

$
%

Derived forms
� Syntatic sugar

� Internal language vs. external (surface) language

CIS 500, 16 October 14

'
&

$
%

Sequencing as a derived form

t1;t2

def

= (�x:Unit.t2) t1

where x =2 FV(t2)

CIS 500, 16 October 15

'
&

$
%

Equivalence of the two definitions

[board]

CIS 500, 16 October 16

'
&

$
%

Ascription

New syntactic forms

t ::= ... terms

t as T ascription

New evaluation rules t �! t 0

v1 as T �! v1 (E-ASCRIBE)

t1 �! t 0
1

t1 as T �! t 0
1 as T

(E-ASCRIBE1)

New typing rules � ` t : T

� ` t1 : T

� ` t1 as T : T

(T-ASCRIBE)

CIS 500, 16 October 17



'
&

$
%

Ascription as a derived form

t as T

def

= (�x:T. x) t

CIS 500, 16 October 18

'
&

$
%

Let-bindings

New syntactic forms

t ::= ... terms

let x=t in t let binding

New evaluation rules t �! t 0

let x=v1 in t2 �! [x 7! v1]t2 (E-LETV)

t1 �! t 0
1

let x=t1 in t2 �! let x=t 0
1 in t2

(E-LET)

New typing rules � ` t : T

� ` t1 : T1 �; x:T1 ` t2 : T2

� ` let x=t1 in t2 : T2

(T-LET)

CIS 500, 16 October 19

'
&

$
%

Pairs

t ::= ... terms

{t,t} pair

t.1 first projection

t.2 second projection

v ::= ... values

{v,v} pair value

T ::= ... types

T1� T2 product type

CIS 500, 16 October 20

'
&

$
%

Evaluation rules for pairs

{v1,v2}:1 �! v1 (E-PAIRBETA1)

{v1,v2}:2 �! v2 (E-PAIRBETA2)

t1 �! t 0
1

t1.1 �! t 0
1.1

(E-PROJ1)

t1 �! t 0
1

t1.2 �! t 0
1.2

(E-PROJ2)

t1 �! t 0
1

{t1,t2} �! {t 0
1,t2}

(E-PAIR1)

t2 �! t 0
2

{v1,t2} �! {v1,t
0

2}

(E-PAIR2)

CIS 500, 16 October 21



'
&

$
%

Typing rules for pairs

� ` t1 : T1 � ` t2 : T2

� ` {t1,t2} : T1� T2

(T-PAIR)

� ` t1 : T11� T12

� ` t1.1 : T11

(T-PROJ1)

� ` t1 : T11� T12

� ` t1.2 : T12

(T-PROJ2)

CIS 500, 16 October 22

'
&

$
%

Tuples

t ::= ... terms

{ti
i21::n} tuple

t.i projection

v ::= ... values

{vi
i21::n} tuple value

T ::= ... types

{Ti
i21::n} tuple type

CIS 500, 16 October 23

'
&

$
%

Evaluation rules for tuples

{vi
i21::n}.j �! vj (E-PROJTUPLE)

t1 �! t 0
1

t1.i �! t 0
1.i

(E-PROJ)

tj �! t 0
j

{vi
i21::j-1,tj,tk
k2j+1::n}

�! {vi
i21::j-1,t 0

j,tk
k2j+1::n}

(E-TUPLE)

CIS 500, 16 October 24

'
&

$
%

Typing rules for tuples

for each i � ` ti : Ti

� ` {ti
i21::n} : {Ti
i21::n}

(T-TUPLE)

� ` t1 : {Ti
i21::n}

� ` t1.j : Tj

(T-PROJ)

CIS 500, 16 October 25



'
&

$
%

Records
t ::= ... terms

{li=ti
i21::n} record

t.l projection

v ::= ... values

{li=vi
i21::n} record value

T ::= ... types

{li:Ti
i21::n} type of records

CIS 500, 16 October 26

'
&

$
%

Evaluation rules for records

{li=vi
i21::n}.lj �! vj (E-PROJRCD)

t1 �! t 0
1

t1.l �! t 0
1.l

(E-PROJ)

tj �! t 0
j

{li=vi
i21::j-1,lj=tj,lk=tk
k2j+1::n}

�! {li=vi
i21::j-1,lj=t
0

j,lk=tk
k2j+1::n}

(E-RCD)

CIS 500, 16 October 27

'
&

$
%

Typing rules for records

for each i � ` ti : Ti

� ` {li=ti
i21::n} : {li:Ti
i21::n}

(T-RCD)

� ` t1 : {li:Ti
i2 1::n}

� ` t1.lj : Tj

(T-PROJ)

CIS 500, 16 October 28


