

CIS 500, 21 October
1

Sums - example

PhysicalAddr = \{firstlast:String, addr:String\}
VirtualAddr = \{name:String, email:String\}
Addr $\quad=$ PhysicalAddr + VirtualAddr
inl : "PhysicalAddr \rightarrow PhysicalAddr+VirtualAddr"
inr : "VirtualAddr \rightarrow PhysicalAddr+VirtualAddr"
getName $=\lambda a:$ Addr.
case a of
inl $\mathrm{x} \Rightarrow \mathrm{x}$.firstlast
| inr y \Rightarrow y.name;

Administrivia

- Missing HW5s have been found
- Notes on exam
- Graded exams and answer Key available from Christine (in 556)
- Rough grade breakdown:
- 65-80 points: A (32\%)
- 50-64 points: B (35\%)
- 35-49 points: C (19\%)
- ≤ 34 points: D/F (14\%)
$60+$ points is on-target for WPE-I
- This exam mostly focused on the more "mechanical" aspects of the material we have seen. Future exams will be more focused on concepts (i.e., there will be more questions like $8,9,10$, and 12).
-Grading questions? See your TA.

CIS 500, 21 October

New syntactic forms

t	::=	...	terms
		inl t	tagging (left)
		inr t	tagging (right)
		case t of inl $\mathrm{x} \Rightarrow \mathrm{t}$ \| inr $\mathrm{x} \Rightarrow \mathrm{t}$	case
v	:: $=$...	values
		inl v	tagged value (left)
		inr v	tagged value (right)
T	:: $=$...	types
		T+T	sum type

New evaluation rules

of inl $\mathrm{x}_{1} \Rightarrow \mathrm{t}_{1}$ | inr $\mathrm{x}_{2} \Rightarrow \mathrm{t}_{2}$
$\longrightarrow\left[\mathrm{x}_{1} \mapsto \mathrm{v}_{0}\right] \mathrm{t}_{1}$
case (inr v_{o})
of inl $\mathrm{x}_{1} \Rightarrow \mathrm{t}_{1}$ | inr $\mathrm{x}_{2} \Rightarrow \mathrm{t}_{2}$
(E-CASEINR)
$\longrightarrow\left[\mathrm{x}_{2} \mapsto \mathrm{v}_{0}\right] \mathrm{t}_{2}$
\qquad
case t_{0} of inl $\mathrm{x}_{1} \Rightarrow \mathrm{t}_{1}$ | inr $\mathrm{x}_{2} \Rightarrow \mathrm{t}_{2}$
\longrightarrow case t_{0}^{\prime} of inl $\mathrm{x}_{1} \Rightarrow \mathrm{t}_{1}$ I inr $\mathrm{x}_{2} \Rightarrow \mathrm{t}_{2}$
(E-CASE)

CIS 500, 21 October

Sums and Uniqueness of Types

Problem:

If t has type T, then inl t has type $T+U$ for every U.
l.e., we've lost uniqueness of types.

Possible solutions:

- "Infer" U as needed during typechecking
- Give constructors different names and only allow each name to appear in one sum type (requires generalization to "variants," which we'll see next) - OCaml's solution
- Annotate each inl and inr with the intended sum type.

For simplicity, let's choose the third.

Evaluation rules ignore annotations:	$t \longrightarrow t^{\prime}$
```case (inl vo as To)```  ```\longrightarrow [ \mathrm { x } _ { 1 } \mapsto \mathrm { v } _ { 0 } ] \mathrm { t } _ { 1 }```	(E-CASEINL)
$\begin{aligned} & \text { case (inr } \mathrm{v}_{0} \text { as } \mathrm{T}_{0} \text { ) } \\ & \text { of inl } \begin{aligned} & \mathrm{x}_{1} \Rightarrow \mathrm{t}_{1} \quad \mid \text { inr } \mathrm{x}_{2} \Rightarrow \mathrm{t}_{2} \\ & \longrightarrow\left[\mathrm{x}_{2} \mapsto \mathrm{v}_{0}\right] \mathrm{t}_{2} \end{aligned} \end{aligned}$	(E-CASEINR)
$\mathrm{t}_{1} \longrightarrow \mathrm{t}_{1}^{\prime}$	(E-
inl $\mathrm{t}_{1}$ as $\mathrm{T}_{2} \longrightarrow$ inl $\mathrm{t}_{1}^{\prime}$ as $\mathrm{T}_{2}$	
$\mathrm{t}_{1} \longrightarrow \mathrm{t}_{1}^{\prime}$	
inr $\mathrm{t}_{1}$ as $\mathrm{T}_{2} \longrightarrow$ inr $\mathrm{t}_{1}^{\prime}$ as $\mathrm{T}_{2}$	



## Variants

Just as we generalized binary products to labeled records, we can generalize binary sums to labeled variants.



## New evaluation rules

case $\left(\left\langle l_{j}=\mathrm{V}_{\mathrm{j}}\right\rangle\right.$ as $T$ ) of $\left\langle\mathrm{l}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}\right\rangle \Rightarrow \mathrm{t}_{\mathrm{i}}{ }^{\mathrm{i} \in \ldots \ldots}$
$\longrightarrow\left[\mathrm{x}_{\mathrm{j}} \mapsto \mathrm{v}_{\mathrm{j}}\right] \mathrm{t}_{\mathrm{j}}$
$\frac{t_{0} \longrightarrow t_{0}^{\prime}}{\text { case } t_{0} \text { of }\left\langle l_{i}=x_{i}\right\rangle \Rightarrow t_{i}{ }^{i \in 1 \ldots n}}$

$$
\longrightarrow \text { case } t_{0}^{\prime} \text { of }\left\langle l_{i}=x_{i}\right\rangle \Rightarrow t_{i}{ }^{i \in 1 \ldots n}
$$

$$
\frac{t_{i} \longrightarrow t_{i}^{\prime}}{\left\langle l_{i}=t_{i}\right\rangle \text { as } T \longrightarrow\left\langle l_{i}=t_{i}^{\prime}\right\rangle \text { as } T}
$$

## Examples

Addr $=$ <physical:PhysicalAddr, virtual:VirtualAddr>;
$\mathrm{a}=$ <physical=pa> as Addr;
getName $=\lambda a: A d d r$.
case a of
<physical=x> $\Rightarrow$ x.firstlast
| <virtual=y> $\Rightarrow$ y.name;

CIS 500, 21 October


## Terminology: "Union Types"

$\mathrm{T}_{1}+\mathrm{T}_{2}$ is a disjoint union of $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$ (the tags inl and inr ensure disjointness)
We could also consider a non-disjoint union $T_{1} \vee T_{2}$, but its properties are more complex because it induces an interesting subtype relation...

## Enumerations

Weekday $=$ <monday:Unit, tuesday:Unit, wednesday:Unit, thursday:Unit, friday:Unit>;
nextBusinessDay $=\lambda w:$ Weekday.
case w of <monday=x> $\quad \Rightarrow$ <tuesday=unit> as Weekday | <tuesday=x> $\Rightarrow$ <wednesday=unit> as Weekday
| <wednesday=x> $\Rightarrow$ <thursday=unit> as Weekday
| <thursday=x> $\Rightarrow$ <friday=unit> as Weekday
| <friday $=\mathrm{x}>\Rightarrow$ <monday=unit> as Weekday;

## General Recursion

- In $\lambda_{\rightarrow \text {, all programs terminate. (Cf. Chapter 12.) }}$
- Hence, untyped terms like omega and fix are not typable.
- But we can extend the system with a (typed) fixed-point operator...




## A more convenient form

letrec $\mathrm{x}: \mathrm{T}_{1}=\mathrm{t}_{1}$ in $\mathrm{t}_{2} \stackrel{\text { def }}{=}$ let $\mathrm{x}=\mathrm{fix}\left(\lambda \mathrm{x}: \mathrm{T}_{1} \cdot \mathrm{t}_{1}\right)$ in $\mathrm{t}_{2}$
letrec iseven : Nat $\rightarrow$ Bool $=$
$\lambda \mathrm{x}$ :Nat.
if iszero x then true
else if iszero (pred $x$ ) then false
else iseven (pred (pred x))
in
iseven 7;
LSee book.] Lists

## Mutability

- In most programming languages, variables are mutable. l.e., a variable provides both
- a name that refers to a previously calculated value
- the possibility of overwriting this value with another (which will be referred to by the same name)
- In some languages (e.g., OCaml), these two features are kept separate - variables are only for naming - the binding between a variable and its value is immutable
- introduce a new class of mutable cells or references
- at any given moment, a reference holds a value (and can be dereferenced to obtain this value)
- a new value may be assigned to a reference

We choose OCaml's style, which is easier to work with formally. So a variable of type T in most languages (except OCaml) will correspond to a Ref $\mathrm{T}($ actually, $a \operatorname{Ref}(0 \mathrm{ption} \mathrm{T})$ ) here.

Examples


