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Administrivia
� Missing HW5s have been found

� Notes on exam

� Graded exams and answer key available from Christine (in 556)

� Rough grade breakdown:

– 65-80 points: A (32%)

– 50-64 points: B (35%)

– 35-49 points: C (19%)

– �34 points: D/F (14%)

60+ points is on-target for WPE-I

� This exam mostly focused on the more “mechanical” aspects of

the material we have seen. Future exams will be more focused on

concepts (i.e., there will be more questions like 8, 9, 10, and 12).

� Grading questions? See your TA.
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Sums – example
PhysicalAddr = {firstlast:String, addr:String}

VirtualAddr = {name:String, email:String}

Addr = PhysicalAddr + VirtualAddr

inl : “PhysicalAddr ! PhysicalAddr+VirtualAddr”

inr : “VirtualAddr ! PhysicalAddr+VirtualAddr”

getName = �a:Addr.

case a of

inl x ) x.firstlast

| inr y ) y.name;
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New syntactic forms
t ::= ... terms

inl t tagging (left)
inr t tagging (right)

case t of inl x)t | inr x)t case

v ::= ... values

inl v tagged value (left)

inr v tagged value (right)

T ::= ... types

T+T sum type
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New typing rules � ` t : T

� ` t1 : T1

� ` inl t1 : T1+T2

(T-INL)

� ` t1 : T2

� ` inr t1 : T1+T2

(T-INR)

� ` t0 : T1+T2

�; x1:T1 ` t1 : T �; x2:T2 ` t2 : T

� ` case t0 of inl x1)t1 | inr x2)t2 : T

(T-CASE)
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New evaluation rules t �! t 0

case (inl v0 )

of inl x1)t1 | inr x2)t2

�! [x1 7! v0]t1

(E-CASEINL)

case (inr v0 )

of inl x1)t1 | inr x2)t2

�! [x2 7! v0]t2

(E-CASEINR)

t0 �! t 0
0

case t0 of inl x1)t1 | inr x2)t2

�! case t 0
0 of inl x1)t1 | inr x2)t2

(E-CASE)
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t1 �! t 0
1

inl t1 �! inl t 0
1

(E-INL)

t1 �! t 0
1

inr t1 �! inr t 0
1

(E-INR)
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Sums and Uniqueness of Types

Problem:

If t has type T, then inl t has type T+U for every U.

I.e., we’ve lost uniqueness of types.

Possible solutions:

� “Infer” U as needed during typechecking

� Give constructors different names and only allow each name to

appear in one sum type (requires generalization to “variants,” which

we’ll see next) — OCaml’s solution

� Annotate each inl and inr with the intended sum type.

For simplicity, let’s choose the third.
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New syntactic forms
t ::= ... terms

inl t as T tagging (left)
inr t as T tagging (right)

v ::= ... values

inl v as T tagged value (left)

inr v as T tagged value (right)
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New typing rules � ` t : T

� ` t1 : T1

� ` inl t1 as T1+T2 : T1+T2

(T-INL)

� ` t1 : T2

� ` inr t1 as T1+T2 : T1+T2

(T-INR)
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Evaluation rules ignore annotations: t �! t 0

case (inl v0 as T0)

of inl x1)t1 | inr x2)t2

�! [x1 7! v0]t1

(E-CASEINL)

case (inr v0 as T0)

of inl x1)t1 | inr x2)t2

�! [x2 7! v0]t2

(E-CASEINR)

t1 �! t 0
1

inl t1 as T2 �! inl t 0
1 as T2

(E-INL)
t1 �! t 0
1

inr t1 as T2 �! inr t 0
1 as T2

(E-INR)
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Variants

Just as we generalized binary products to labeled records, we can

generalize binary sums to labeled variants.
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New syntactic forms
t ::= ... terms

<l=t> as T tagging
case t of <li=xi>)ti
i21::n case

T ::= ... types

<li:Ti
i21::n> type of variants
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New evaluation rules t �! t 0

case (<lj=vj> as T) of <li=xi>)ti
i21::n

�! [xj 7! vj]tj

(E-CASEVARIANT)

t0 �! t 0
0

case t0 of <li=xi>)ti
i21::n

�! case t 0
0 of <li=xi>)ti
i21::n

(E-CASE)

ti �! t 0
i

<li=ti> as T �! <li=t
0

i> as T

(E-VARIANT)
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New typing rules � ` t : T

� ` tj : Tj

� ` <lj=tj> as <li:Ti
i21::n> : <li:Ti
i21::n>

(T-VARIANT)

� ` t0 : <li:Ti
i21::n>

for each i �; xi:Ti ` ti : T

� ` case t0 of <li=xi>)ti
i21::n

: T

(T-CASE)
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Examples

Addr = <physical:PhysicalAddr, virtual:VirtualAddr>;

a = <physical=pa> as Addr;

getName = �a:Addr.

case a of

<physical=x> ) x.firstlast

| <virtual=y> ) y.name;
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Options

Just like in OCaml...
OptionalNat = <none:Unit, some:Nat>;

Table = Nat!OptionalNat;

emptyTable = �n:Nat. <none=unit> as OptionalNat;

extendTable =

�t:Table. �m:Nat. �v:Nat.

�n:Nat.

if equal n m then <some=v> as OptionalNat

else t n;

x = case t(5) of

<none=u> ) 999

| <some=v> ) v;
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Enumerations

Weekday = <monday:Unit, tuesday:Unit, wednesday:Unit,

thursday:Unit, friday:Unit>;

nextBusinessDay = �w:Weekday.

case w of <monday=x> ) <tuesday=unit> as Weekday

| <tuesday=x> ) <wednesday=unit> as Weekday

| <wednesday=x> ) <thursday=unit> as Weekday

| <thursday=x> ) <friday=unit> as Weekday

| <friday=x> ) <monday=unit> as Weekday;
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Terminology: “Union Types”
T1+T2 is a disjoint union of T1 and T2 (the tags inl and inr ensure

disjointness)

We could also consider a non-disjoint union T1 _ T2, but its properties are

more complex because it induces an interesting subtype relation...
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General Recursion
� In �!, all programs terminate. (Cf. Chapter 12.)

� Hence, untyped terms like omega and fix are not typable.

� But we can extend the system with a (typed) fixed-point operator...
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Example

ff = �ie:Nat!Bool.

�x:Nat.

if iszero x then true

else if iszero (pred x) then false

else ie (pred (pred x));

iseven = fix ff;

iseven 7;

CIS 500, 21 October 21



'
&

$
%

New syntactic forms
t ::= ... terms

fix t fixed point of t

New evaluation rules t �! t 0

fix (�x:T1.t2)

�! [x 7! (fix (�x:T1.t2))]t2

(E-FIXBETA)

t1 �! t 0
1

fix t1 �! fix t 0
1

(E-FIX)
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New typing rules � ` t : T

� ` t1 : T1!T1

� ` fix t1 : T1

(T-FIX)
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A more convenient form

letrec x:T1=t1 in t2

def

= let x = fix (�x:T1.t1) in t2

letrec iseven : Nat!Bool =

�x:Nat.

if iszero x then true

else if iszero (pred x) then false

else iseven (pred (pred x))

in
iseven 7;
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Lists

[See book.]
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References
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Mutability
� In most programming languages, variables are mutable. I.e., a

variable provides both

� a name that refers to a previously calculated value

� the possibility of overwriting this value with another (which will be

referred to by the same name)

� In some languages (e.g., OCaml), these two features are kept separate

� variables are only for naming — the binding between a variable

and its value is immutable

� introduce a new class of mutable cells or references

� at any given moment, a reference holds a value (and can be

dereferenced to obtain this value)

� a new value may be assigned to a reference
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We choose OCaml’s style, which is easier to work with formally.

So a variable of type T in most languages (except OCaml) will correspond

to a Ref T (actually, a Ref(Option T)) here.
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Examples

[...]
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� ` t1 : T1

� ` ref t1 : Ref T1

(T-REF)

� ` t1 : Ref T1

� ` !t1 : T1

(T-DEREF)

� ` t1 : Ref T1 � ` t2 : T1

� ` t1:=t2 : Unit

(T-ASSIGN)
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