
'
&

$
%

CIS 500

Software Foundations

Fall 2002

21 October

CIS 500, 21 October 1

'
&

$
%

Administrivia
� Missing HW5s have been found

� Notes on exam

� Graded exams and answer key available from Christine (in 556)

� Rough grade breakdown:

– 65-80 points: A (32%)

– 50-64 points: B (35%)

– 35-49 points: C (19%)

– �34 points: D/F (14%)

60+ points is on-target for WPE-I

� This exam mostly focused on the more “mechanical” aspects of

the material we have seen. Future exams will be more focused on

concepts (i.e., there will be more questions like 8, 9, 10, and 12).

� Grading questions? See your TA.

CIS 500, 21 October 2

'
&

$
%

Sums – example
PhysicalAddr = {firstlast:String, addr:String}

VirtualAddr = {name:String, email:String}

Addr = PhysicalAddr + VirtualAddr

inl : “PhysicalAddr ! PhysicalAddr+VirtualAddr”

inr : “VirtualAddr ! PhysicalAddr+VirtualAddr”

getName = �a:Addr.

case a of

inl x) x.firstlast

| inr y) y.name;

CIS 500, 21 October 3

'
&

$
%

New syntactic forms
t ::= ... terms

inl t tagging (left)
inr t tagging (right)

case t of inl x)t | inr x)t case

v ::= ... values

inl v tagged value (left)

inr v tagged value (right)

T ::= ... types

T+T sum type

CIS 500, 21 October 4

'
&

$
%

New typing rules � ` t : T

� ` t1 : T1

� ` inl t1 : T1+T2

(T-INL)

� ` t1 : T2

� ` inr t1 : T1+T2

(T-INR)

� ` t0 : T1+T2

�; x1:T1 ` t1 : T �; x2:T2 ` t2 : T

� ` case t0 of inl x1)t1 | inr x2)t2 : T

(T-CASE)

CIS 500, 21 October 5

'
&

$
%

New evaluation rules t �! t 0

case (inl v0)

of inl x1)t1 | inr x2)t2

�! [x1 7! v0]t1

(E-CASEINL)

case (inr v0)

of inl x1)t1 | inr x2)t2

�! [x2 7! v0]t2

(E-CASEINR)

t0 �! t 0
0

case t0 of inl x1)t1 | inr x2)t2

�! case t 0
0 of inl x1)t1 | inr x2)t2

(E-CASE)

CIS 500, 21 October 6

'
&

$
%

t1 �! t 0
1

inl t1 �! inl t 0
1

(E-INL)

t1 �! t 0
1

inr t1 �! inr t 0
1

(E-INR)

CIS 500, 21 October 7

'
&

$
%

Sums and Uniqueness of Types

Problem:

If t has type T, then inl t has type T+U for every U.

I.e., we’ve lost uniqueness of types.

Possible solutions:

� “Infer” U as needed during typechecking

� Give constructors different names and only allow each name to

appear in one sum type (requires generalization to “variants,” which

we’ll see next) — OCaml’s solution

� Annotate each inl and inr with the intended sum type.

For simplicity, let’s choose the third.

CIS 500, 21 October 8

'
&

$
%

New syntactic forms
t ::= ... terms

inl t as T tagging (left)
inr t as T tagging (right)

v ::= ... values

inl v as T tagged value (left)

inr v as T tagged value (right)

CIS 500, 21 October 9

'
&

$
%

New typing rules � ` t : T

� ` t1 : T1

� ` inl t1 as T1+T2 : T1+T2

(T-INL)

� ` t1 : T2

� ` inr t1 as T1+T2 : T1+T2

(T-INR)

CIS 500, 21 October 10

'
&

$
%

Evaluation rules ignore annotations: t �! t 0

case (inl v0 as T0)

of inl x1)t1 | inr x2)t2

�! [x1 7! v0]t1

(E-CASEINL)

case (inr v0 as T0)

of inl x1)t1 | inr x2)t2

�! [x2 7! v0]t2

(E-CASEINR)

t1 �! t 0
1

inl t1 as T2 �! inl t 0
1 as T2

(E-INL)
t1 �! t 0
1

inr t1 as T2 �! inr t 0
1 as T2

(E-INR)

CIS 500, 21 October 11

'
&

$
%

Variants

Just as we generalized binary products to labeled records, we can

generalize binary sums to labeled variants.

CIS 500, 21 October 12

'
&

$
%

New syntactic forms
t ::= ... terms

<l=t> as T tagging
case t of <li=xi>)ti
i21::n case

T ::= ... types

<li:Ti
i21::n> type of variants

CIS 500, 21 October 13

'
&

$
%

New evaluation rules t �! t 0

case (<lj=vj> as T) of <li=xi>)ti
i21::n

�! [xj 7! vj]tj

(E-CASEVARIANT)

t0 �! t 0
0

case t0 of <li=xi>)ti
i21::n

�! case t 0
0 of <li=xi>)ti
i21::n

(E-CASE)

ti �! t 0
i

<li=ti> as T �! <li=t
0

i> as T

(E-VARIANT)

CIS 500, 21 October 14

'
&

$
%

New typing rules � ` t : T

� ` tj : Tj

� ` <lj=tj> as <li:Ti
i21::n> : <li:Ti
i21::n>

(T-VARIANT)

� ` t0 : <li:Ti
i21::n>

for each i �; xi:Ti ` ti : T

� ` case t0 of <li=xi>)ti
i21::n

: T

(T-CASE)

CIS 500, 21 October 15

'
&

$
%

Examples

Addr = <physical:PhysicalAddr, virtual:VirtualAddr>;

a = <physical=pa> as Addr;

getName = �a:Addr.

case a of

<physical=x>) x.firstlast

| <virtual=y>) y.name;

CIS 500, 21 October 16

'
&

$
%

Options

Just like in OCaml...
OptionalNat = <none:Unit, some:Nat>;

Table = Nat!OptionalNat;

emptyTable = �n:Nat. <none=unit> as OptionalNat;

extendTable =

�t:Table. �m:Nat. �v:Nat.

�n:Nat.

if equal n m then <some=v> as OptionalNat

else t n;

x = case t(5) of

<none=u>) 999

| <some=v>) v;

CIS 500, 21 October 17

'
&

$
%

Enumerations

Weekday = <monday:Unit, tuesday:Unit, wednesday:Unit,

thursday:Unit, friday:Unit>;

nextBusinessDay = �w:Weekday.

case w of <monday=x>) <tuesday=unit> as Weekday

| <tuesday=x>) <wednesday=unit> as Weekday

| <wednesday=x>) <thursday=unit> as Weekday

| <thursday=x>) <friday=unit> as Weekday

| <friday=x>) <monday=unit> as Weekday;

CIS 500, 21 October 18

'
&

$
%

Terminology: “Union Types”
T1+T2 is a disjoint union of T1 and T2 (the tags inl and inr ensure

disjointness)

We could also consider a non-disjoint union T1 _ T2, but its properties are

more complex because it induces an interesting subtype relation...

CIS 500, 21 October 19

'
&

$
%

General Recursion
� In �!, all programs terminate. (Cf. Chapter 12.)

� Hence, untyped terms like omega and fix are not typable.

� But we can extend the system with a (typed) fixed-point operator...

CIS 500, 21 October 20

'
&

$
%

Example

ff = �ie:Nat!Bool.

�x:Nat.

if iszero x then true

else if iszero (pred x) then false

else ie (pred (pred x));

iseven = fix ff;

iseven 7;

CIS 500, 21 October 21

'
&

$
%

New syntactic forms
t ::= ... terms

fix t fixed point of t

New evaluation rules t �! t 0

fix (�x:T1.t2)

�! [x 7! (fix (�x:T1.t2))]t2

(E-FIXBETA)

t1 �! t 0
1

fix t1 �! fix t 0
1

(E-FIX)

CIS 500, 21 October 22

'
&

$
%

New typing rules � ` t : T

� ` t1 : T1!T1

� ` fix t1 : T1

(T-FIX)

CIS 500, 21 October 23

'
&

$
%

A more convenient form

letrec x:T1=t1 in t2

def

= let x = fix (�x:T1.t1) in t2

letrec iseven : Nat!Bool =

�x:Nat.

if iszero x then true

else if iszero (pred x) then false

else iseven (pred (pred x))

in
iseven 7;

CIS 500, 21 October 24

'
&

$
%

Lists

[See book.]

CIS 500, 21 October 25

'
&

$
%

References

CIS 500, 21 October 26

'
&

$
%

Mutability
� In most programming languages, variables are mutable. I.e., a

variable provides both

� a name that refers to a previously calculated value

� the possibility of overwriting this value with another (which will be

referred to by the same name)

� In some languages (e.g., OCaml), these two features are kept separate

� variables are only for naming — the binding between a variable

and its value is immutable

� introduce a new class of mutable cells or references

� at any given moment, a reference holds a value (and can be

dereferenced to obtain this value)

� a new value may be assigned to a reference

CIS 500, 21 October 27

'
&

$
%

We choose OCaml’s style, which is easier to work with formally.

So a variable of type T in most languages (except OCaml) will correspond

to a Ref T (actually, a Ref(Option T)) here.

CIS 500, 21 October 28

'
&

$
%

Examples

[...]

CIS 500, 21 October 29

'
&

$
%

� ` t1 : T1

� ` ref t1 : Ref T1

(T-REF)

� ` t1 : Ref T1

� ` !t1 : T1

(T-DEREF)

� ` t1 : Ref T1 � ` t2 : T1

� ` t1:=t2 : Unit

(T-ASSIGN)

CIS 500, 21 October 30

