~N N 4 Administrivia

+ [Use of homework solutions])

é CIS 500
Software Foundations
Fall 2002

¢+ [Study groups?]

\ 23 October)

N N

CIS 500, 23 October 1 CIS 500, 23 October

/ N / / Final example

NatArray = Ref (Nat—Nat);

newarray = A_:Unit. ref (An:Nat.0);

References, continued . Unit — NatArray

lookup = Aa:NatArray. An:Nat. (!a) n;
: NatArray — Nat — Nat

update = Aa:NatArray. Am:Nat. Av:Nat.
let oldf = !'a in
a := (An:Nat. if equal m n then v else oldf n);
: NatArray — Nat — Nat — Unit

N N

CIS 500, 23 October 3 CIS 500, 23 October

/ Syntax \ / Typing Rules \

t u= terms
unit unit constant Frw = (T-REF)
x variable ' ref t1 : Ref Ty
Ax:T.t abstraction
tt application Ity : Ref Ty
_ (T-DEREF)
k1t : Ty
ref t reference creation
It dereference
- assignment 'ty : Ref T FHt2 : Ty (T-ASS]GN)
' ty:=t2 : Unit

\\ plus other familiar types, in examples. / \ /

CIS 500, 23 October S CIS 500, 23 October

/ Evaluation \ / Evaluation \

What is the value of the expression ref 07? What is the value of the expression ref 07?

Crucial observation: evaluating ref 0 must do something.

Otherwise,
r =ref O
s =ref O
and
r = ref O

wn
1]

r

would behave the same.

_ / _ /

CIS 500, 23 October 7 CIS 500, 23 October 7-a

/ Evaluation

What is the value of the expression ref 07?

Crucial observation: evaluating ref 0 must do something.

Otherwise,
r =ref O
s = ref O
and
r = ref O
s=r

would behave the same.

Specifically, evaluating ref 0 should allocate some storage and return a
reference (or pointer) to that storage.

_

CIS 500, 23 October

7b

/ J The Store

A reference is a pointer into the memory (the heap or store).

What is the store?

_

CIS 500, 23 October

/ Evaluation \\

What is the value of the expression ref 07?

Crucial observation: evaluating ref 0 must do something.

Otherwise,
r =ref O
s =ref O
and
r = ref O
s =r

would behave the same.

Specifically, evaluating ref 0 should allocate some storage and return a
reference (or pointer) to that storage.

So what is a reference?

N

/

CIS 500, 23 October

/ The Store \\

A reference is a pointer into the memory (the heap or store).
What is the store?
¢ Concretely: An array of 8-bit bytes, indexed by 32-bit integers.

N

7-c

CIS 500, 23 October

8-a

e The Store I 4 The Store I

A reference is a pointer into the memory (the heap or store). A reference is a pointer into the memory (the heap or store).
What is the store? What is the store?
¢ Concretely: An array of 8-bit bytes, indexed by 32-bit integers. ¢ Concretely: An array of 8-bit bytes, indexed by 32-bit integers.
¢ More abstractly: an array of values ¢ More abstractly: an array of values

¢ Even more abstractly: a partial function from locations to values.

_ AN %

CIS 500, 23 October 8-b CIS 500, 23 October 8-c

/ Locations N / Syntax of Terms \\

Syntax of values: t U= terms
n= values .
v He unit unit constant
unit unit constant .
bstracti | x variable
Ax:T.t abstraction value .
) Ax:T.t abstraction
1 store location L.
tt application
ref t reference creation
1t dereference
t:=t assignment
1 store location

\\ ... and since all values are termsj k J

CIS 500, 23 October 9 CIS 500, 23 October 10

Does this mean we are going to allow programmers to write explicit
locations in their programs?

No: This is just a modeling trick. We are enriching the language of terms
to include some run-time structures, so that we can continue to formalize
the evaluation relation as a relation between terms.

\
\

4 Aside \

N S

CIS 500, 23 October

n

/'/’ . a \\
Evaluation \

Evaluation rules for function abstraction and application are augmented
with stores, but don’t do anything with them.

t1lp— il u’

(E-APP1)
t1 t2lpu— t] ta2| p’
to| u— t3l u’
(E-APP2)
vi t2l p— Vi oty
(Ax:T11.t12) v2| p— [x = v2lti2l p (E-APPABS)

\

o /

CIS 500, 23 October

13

{
\
\

{

\

g Y,

Evaluation \

The result of evaluating a term now depends on the store in which it is
evaluated. Moreover,; the result of evaluating a term is not just a value —
we must also Keep track of the changes that get made to the store.

le., the evaluation relation should now map a term and a store to a
reduced term and a new store.

tlp— ¢

We use the metavariable u to range over stores.

CIS 500, 23 October 12

o *‘\\\
f/ A term !t first evaluates in t1 until it becomes a value... \
ty |l — t7 o

! (E-DEREF)
o1 |p— te7 [pf

.. and then looks up this value (which must be a location, if the original
term was well typed) and returns its contents in the current store:

() =v

_ (E-DerREeFLoOC)
nNjp—vip

N Y,

CIS 500, 23 October 14

An assignment t;:=t; first evaluates in t; and t2 until they become \

values...
t —t7 | u
11k ile (E-AsSIGN1)
t1:=tz2 | p— ty:=t2 | p’
t2p—ty
(E-AssIGN2)
vii=ta | u— vyi=ty | u’
.. and then returns unit and an updated store:
li=vy | 0 — unit | [l = v2]u (E-ASSIGN)
CIS 500, 23 October 15
Typing Locations \

Q: What is the type of a location?

_)

CIS 500, 23 October 7

A term of the form ref t; first evaluates inside t; until it becomes a \
value...

trlu—t7 [

(E-REF)

ref t1 |u — ref t7 | pn’

.. and then chooses (allocates) a fresh location 1, augments the store
with a binding from 1 to vy, and returns 1.

1 & dom(u)

(E-REFV)

ref vi|pu—1|(yu, Lvy)

_ /

CIS 500, 23 October 6

Typing Locations \

Q: What is the type of a location?
A: It depends on the storel
E.g., in the store (1; — unit, 1> — unit), the term !1, has type Unit.

But in the store (11 — unit, 12 — Ax:Unit.x), the term !1, has type
Unit—Unit.

_ J

CIS 500, 23 October 17-a

Typing Locations — first try

~

/

8

Roughly:
T p(l): T,
E1l:Ref Ty
CIS 500, 23 October
Problem

make typing derivations very large!

E.g., if

_

(0 =1y — Ax:Nat.
12 — Ax:Nat.
13 — Ax:Nat.
14 — Ax:Nat.

15 — Ax:Nat.

However, this rule is not completely satisfactory.

999,
1 (L
" ('
s (13
1y (1l

then how big is the typing derivation for !15?

For one thing, it can

x),
x),
x),

x)),

~

/

CIS 500, 23 October

19

/ Typing Locations — first try
Roughly:

Tk u() : T

FE1l:Ref Tq

More precisely:

FlpkFpl):T

FukE1l:Ref Tq

and types).

_

~

l.e., typing is now a four-place relation (between contexts, stores, terms,

/

CIS 500, 23 October

18-a

/ Problem!

But wait... it gets worse. Suppose

(u=1; = Ax:Nat. 'ly x,

> — Ax:Nat. !l x),

Now how big is the typing derivation for !1,?

_

~

CIS 500, 23 October

20

/ , Store Typings \ é-g-, for

Observation: a given location in the store is always used to hold values of
the same type.

These intended types can be collected into a store typing — a partial
function from locations to types.

u=(l; — Ax:Nat. 999,
L, — Ax:Nat. '3 (1 %),
13 — Ax:Nat. !l ('l x),
1y — Ax:Nat. !l3 ('l3 x),

ls — Ax:Nat. !l (!l %)),

A reasonable store typing would be

Y = (13 — Nat—Nat,
12 — Nat—Nat,
13 — Nat—Nat,
14 — Nat—Nat,

15 — Nat—Nat)

N N

CIS 500, 23 October

N /N

CIS 500, 23 October

21 ClS 500, 23 October 22
ﬁ\low, suppose we are given a store typing X describing the store p in \ Final typing rules \
which we intend to evaluate some term t. Then we can use I to look
up the types of locations in t instead of calculating them from the values
in p. (=1
a L L (T-Loc)
F'|ZF1:Ref Ty
(=T
B Ol N (T-Loc)
N XZkFTL1:Ref Ty Nkt : Ty
(T-ReF)
N Xkref t1 : Ref Ty
le., typing is now a four-place relation between between contexts, store
typings, terms, and types. ' ZFty:Ref Ty
(T-DEREF)
Xk 'ty : Ty
N XkHt; :Ref T NXkt2:T
! 1 2o (T-AssIGN)
N Xk ty:=ty : Unit

/

23 CIS 500, 23 October

24

[...]

\

Aside: garbage collection

~

CIS 500, 23 October

25

-

\

Exceptions

CIS 500, 23 October

[...]

N

Aside: pointer arithmetic

CIS 500, 23 October

/1)

\

CIS 500, 23 October

