
'
&

$
%

CIS 500

Software Foundations

Fall 2002

23 October

CIS 500, 23 October 1

'
&

$
%

Administrivia

� [Use of homework solutions]

� [Study groups?]

CIS 500, 23 October 2

'
&

$
%

References, continued

CIS 500, 23 October 3

'
&

$
%

Final example

NatArray = Ref (Nat!Nat);

newarray = �_:Unit. ref (�n:Nat.0);

: Unit ! NatArray

lookup = �a:NatArray. �n:Nat. (!a) n;

: NatArray ! Nat ! Nat

update = �a:NatArray. �m:Nat. �v:Nat.

let oldf = !a in

a := (�n:Nat. if equal m n then v else oldf n);

: NatArray ! Nat ! Nat ! Unit

CIS 500, 23 October 4



'
&

$
%

Syntax
t ::= terms

unit unit constant
x variable

�x:T.t abstraction

t t application

ref t reference creation

!t dereference

t:=t assignment

... plus other familiar types, in examples.

CIS 500, 23 October 5

'
&

$
%

Typing Rules

� ` t1 : T1

� ` ref t1 : Ref T1

(T-REF)

� ` t1 : Ref T1

� ` !t1 : T1

(T-DEREF)

� ` t1 : Ref T1 � ` t2 : T1

� ` t1:=t2 : Unit

(T-ASSIGN)

CIS 500, 23 October 6

'
&

$
%

Evaluation

What is the value of the expression ref 0?

CIS 500, 23 October 7

'
&

$
%

Evaluation

What is the value of the expression ref 0?

Crucial observation: evaluating ref 0 must do something.

Otherwise,

r = ref 0

s = ref 0

and

r = ref 0

s = r

would behave the same.

CIS 500, 23 October 7-a



'
&

$
%

Evaluation

What is the value of the expression ref 0?

Crucial observation: evaluating ref 0 must do something.

Otherwise,

r = ref 0

s = ref 0

and

r = ref 0

s = r

would behave the same.

Specifically, evaluating ref 0 should allocate some storage and return a

reference (or pointer) to that storage.

CIS 500, 23 October 7-b

'
&

$
%

Evaluation

What is the value of the expression ref 0?

Crucial observation: evaluating ref 0 must do something.

Otherwise,

r = ref 0

s = ref 0

and

r = ref 0

s = r

would behave the same.

Specifically, evaluating ref 0 should allocate some storage and return a

reference (or pointer) to that storage.

So what is a reference?

CIS 500, 23 October 7-c

'
&

$
%

The Store

A reference is a pointer into the memory (the heap or store).

What is the store?

CIS 500, 23 October 8

'
&

$
%

The Store

A reference is a pointer into the memory (the heap or store).

What is the store?

� Concretely: An array of 8-bit bytes, indexed by 32-bit integers.

CIS 500, 23 October 8-a



'
&

$
%

The Store

A reference is a pointer into the memory (the heap or store).

What is the store?

� Concretely: An array of 8-bit bytes, indexed by 32-bit integers.

� More abstractly: an array of values

CIS 500, 23 October 8-b

'
&

$
%

The Store

A reference is a pointer into the memory (the heap or store).

What is the store?

� Concretely: An array of 8-bit bytes, indexed by 32-bit integers.

� More abstractly: an array of values

� Even more abstractly: a partial function from locations to values.

CIS 500, 23 October 8-c

'
&

$
%

Locations

Syntax of values:

v ::= values

unit unit constant

�x:T.t abstraction value

l store location

... and since all values are terms...

CIS 500, 23 October 9

'
&

$
%

Syntax of Terms

t ::= terms

unit unit constant

x variable

�x:T.t abstraction

t t application

ref t reference creation

!t dereference

t:=t assignment
l store location

CIS 500, 23 October 10



'
&

$
%

Aside

Does this mean we are going to allow programmers to write explicit

locations in their programs?

No: This is just a modeling trick. We are enriching the language of terms

to include some run-time structures, so that we can continue to formalize

the evaluation relation as a relation between terms.

CIS 500, 23 October 11

'
&

$
%

Evaluation

The result of evaluating a term now depends on the store in which it is

evaluated. Moreover, the result of evaluating a term is not just a value —

we must also keep track of the changes that get made to the store.

I.e., the evaluation relation should now map a term and a store to a

reduced term and a new store.

tj � �! t
0

j �
0

We use the metavariable � to range over stores.

CIS 500, 23 October 12

'
&

$
%

Evaluation

Evaluation rules for function abstraction and application are augmented

with stores, but don’t do anything with them.

t1j � �! t
0

1j � 0

t1 t2j � �! t
0

1 t2j � 0

(E-APP1)

t2j � �! t
0

2j � 0

v1 t2j � �! v1 t
0

2j � 0

(E-APP2)

(�x:T11.t12) v2j � �! [x 7! v2]t12j � (E-APPABS)

CIS 500, 23 October 13

'
&

$
%

A term !t1 first evaluates in t1 until it becomes a value...

t1 j � �! t
0

1 j � 0

!t1 j � �! !t
0

1 j � 0

(E-DEREF)

... and then looks up this value (which must be a location, if the original

term was well typed) and returns its contents in the current store:

�(l) = v

!l j � �! v j �

(E-DEREFLOC)

CIS 500, 23 October 14



'
&

$
%

An assignment t1:=t2 first evaluates in t1 and t2 until they become

values...

t1 j � �! t
0

1 j � 0

t1:=t2 j � �! t
0

1:=t2 j � 0

(E-ASSIGN1)

t2 j � �! t
0

2 j � 0

v1:=t2 j � �! v1:=t
0

2 j � 0

(E-ASSIGN2)

... and then returns unit and an updated store:

l:=v2 j � �! unit j [l 7! v2]� (E-ASSIGN)

CIS 500, 23 October 15

'
&

$
%

A term of the form ref t1 first evaluates inside t1 until it becomes a

value...

t1 j � �! t
0

1 j � 0

ref t1 j � �! ref t
0

1 j � 0

(E-REF)

... and then chooses (allocates) a fresh location l, augments the store

with a binding from l to v1, and returns l:

l =2 dom(�)

ref v1 j � �! l j (�; l 7! v1)

(E-REFV)

CIS 500, 23 October 16

'
&

$
%

Typing Locations

Q: What is the type of a location?

CIS 500, 23 October 17

'
&

$
%

Typing Locations

Q: What is the type of a location?

A: It depends on the store!

E.g., in the store (l1 7! unit; l2 7! unit) , the term !l2 has type Unit.

But in the store (l1 7! unit; l2 7! �x:Unit.x) , the term !l2 has type

Unit!Unit.

CIS 500, 23 October 17-a



'
&

$
%

Typing Locations — first try

Roughly:

� ` �(l) : T1

� ` l : Ref T1

CIS 500, 23 October 18

'
&

$
%

Typing Locations — first try

Roughly:

� ` �(l) : T1

� ` l : Ref T1

More precisely:

� j � ` �(l) : T1

� j � ` l : Ref T1

I.e., typing is now a four-place relation (between contexts, stores, terms,

and types).

CIS 500, 23 October 18-a

'
&

$
%

Problem

However, this rule is not completely satisfactory. For one thing, it can

make typing derivations very large!

E.g., if

(� = l1 7! �x:Nat. 999;

l2 7! �x:Nat. !l1 (!l1 x);

l3 7! �x:Nat. !l2 (!l2 x);

l4 7! �x:Nat. !l3 (!l3 x);

l5 7! �x:Nat. !l4 (!l4 x));

then how big is the typing derivation for !l5?

CIS 500, 23 October 19

'
&

$
%

Problem!

But wait... it gets worse. Suppose

(� = l1 7! �x:Nat. !l2 x;

l2 7! �x:Nat. !l1 x);

Now how big is the typing derivation for !l2?

CIS 500, 23 October 20



'
&

$
%

Store Typings

Observation: a given location in the store is always used to hold values of

the same type.

These intended types can be collected into a store typing — a partial

function from locations to types.

CIS 500, 23 October 21

'
&

$
%

E.g., for

� = (l1 7! �x:Nat. 999;

l2 7! �x:Nat. !l1 (!l1 x);

l3 7! �x:Nat. !l2 (!l2 x);

l4 7! �x:Nat. !l3 (!l3 x);

l5 7! �x:Nat. !l4 (!l4 x));

A reasonable store typing would be

� = (l1 7! Nat!Nat;

l2 7! Nat!Nat;

l3 7! Nat!Nat;

l4 7! Nat!Nat;

l5 7! Nat!Nat)

CIS 500, 23 October 22

'
&

$
%
Now, suppose we are given a store typing � describing the store � in

which we intend to evaluate some term t. Then we can use � to look

up the types of locations in t instead of calculating them from the values

in �.

�(l) = T1

� j � ` l : Ref T1

(T-LOC)

I.e., typing is now a four-place relation between between contexts, store

typings, terms, and types.

CIS 500, 23 October 23

'
&

$
%

Final typing rules

�(l) = T1

� j � ` l : Ref T1

(T-LOC)

� j � ` t1 : T1

� j � ` ref t1 : Ref T1

(T-REF)

� j � ` t1 : Ref T11

� j � ` !t1 : T11

(T-DEREF)

� j � ` t1 : Ref T11 � j � ` t2 : T11

� j � ` t1:=t2 : Unit

(T-ASSIGN)

CIS 500, 23 October 24



'
&

$
%

Aside: garbage collection

[...]

CIS 500, 23 October 25

'
&

$
%

Aside: pointer arithmetic

[...]

CIS 500, 23 October 26

'
&

$
%

Exceptions

CIS 500, 23 October 27

'
&

$
%

[...]

CIS 500, 23 October 28


