CIS 500

Software Foundations Fall 2002

23 October

Administrivia

- ♦ [Use of homework solutions]
- [Study groups?]

References, continued

Final example

Syntax

```
unit
x
\[ \lambda x:T.t
t t
\]
t t

ref t
!t
t:=t
```

::=

terms

unit constant variable abstraction application

reference creation dereference assignment

... plus other familiar types, in examples.

Typing Rules

$$\frac{\Gamma \vdash t_1 : T_1}{\Gamma \vdash \text{ref } t_1 : \text{Ref } T_1}$$
 (T-Ref)

$$\frac{\Gamma \vdash t_1 : Ref T_1}{\Gamma \vdash !t_1 : T_1}$$
 (T-DEREF)

$$\frac{\Gamma \vdash t_1 : \text{Ref } T_1 \qquad \Gamma \vdash t_2 : T_1}{\Gamma \vdash t_1 := t_2 : \text{Unit}}$$
 (T-Assign)

What is the value of the expression ref 0?

What is the value of the expression ref 0?

Crucial observation: evaluating ref 0 must do something.

Otherwise,

$$r = ref 0$$

 $s = ref 0$

and

$$r = ref 0$$

 $s = r$

would behave the same.

What is the value of the expression ref 0?

Crucial observation: evaluating ref 0 must do something.

Otherwise,

$$r = ref 0$$

 $s = ref 0$

and

$$r = ref 0$$

 $s = r$

would behave the same.

Specifically, evaluating ref 0 should allocate some storage and return a reference (or pointer) to that storage.

What is the value of the expression ref 0?

Crucial observation: evaluating ref 0 must do something.

Otherwise,

$$r = ref 0$$

 $s = ref 0$

and

$$r = ref 0$$

 $s = r$

would behave the same.

Specifically, evaluating ref 0 should allocate some storage and return a reference (or pointer) to that storage.

So what is a reference?

A reference is a pointer into the memory (the heap or store).

What is the store?

A reference is a pointer into the memory (the heap or store).

What is the store?

♦ Concretely: An array of 8-bit bytes, indexed by 32-bit integers.

A reference is a pointer into the memory (the heap or store).

What is the store?

♦ Concretely: An array of 8-bit bytes, indexed by 32-bit integers.

♦ More abstractly: an array of values

A reference is a pointer into the memory (the heap or store).

What is the store?

- ♦ Concretely: An array of 8-bit bytes, indexed by 32-bit integers.
- ♦ More abstractly: an array of values
- ♦ Even more abstractly: a partial function from locations to values.

Locations

Syntax of values:

```
v ::=
unit
λx:T.t
```

values
unit constant
abstraction value
store location

... and since all values are terms...

Syntax of Terms

unit
x
\(\lambda x:T.t \)
t t
ref t
!t
t:=t

::=

terms

unit constant
variable
abstraction
application
reference creation
dereference
assignment

Aside

Does this mean we are going to allow programmers to write explicit locations in their programs?

No: This is just a modeling trick. We are enriching the language of terms to include some run-time structures, so that we can continue to formalize the evaluation relation as a relation between terms.

The result of evaluating a term now depends on the store in which it is evaluated. Moreover, the result of evaluating a term is not just a value — we must also keep track of the changes that get made to the store.

I.e., the evaluation relation should now map a term and a store to a reduced term and a new store.

$$t \mid \mu \longrightarrow t' \mid \mu'$$

We use the metavariable μ to range over stores.

Evaluation rules for function abstraction and application are augmented with stores, but don't do anything with them.

$$\frac{\begin{array}{c} t_1 \mid \mu \longrightarrow t_1' \mid \mu' \\ \hline t_1 \quad t_2 \mid \mu \longrightarrow t_1' \quad t_2 \mid \mu' \end{array}} {\text{(E-APP1)}}$$

$$(\lambda x:T_{11}.t_{12}) \quad v_2 \mid \mu \longrightarrow [x \mapsto v_2]t_{12} \mid \mu \qquad \qquad (E-APPABS)$$

A term !t1 first evaluates in t1 until it becomes a value...

$$\frac{\mathtt{t}_1 \mid \mu \longrightarrow \mathtt{t}_1' \mid \mu'}{\mathtt{!t}_1 \mid \mu \longrightarrow \mathtt{!t}_1' \mid \mu'} \tag{E-Deref}$$

... and then looks up this value (which must be a location, if the original term was well typed) and returns its contents in the current store:

$$\frac{\mu(l) = v}{!l \mid \mu \longrightarrow v \mid \mu}$$

(E-DerefLoc)

An assignment $t_1 := t_2$ first evaluates in t_1 and t_2 until they become values...

$$\frac{\mathtt{t}_1 \mid \mu \longrightarrow \mathtt{t}_1' \mid \mu'}{\mathtt{t}_1 := \mathtt{t}_2 \mid \mu \longrightarrow \mathtt{t}_1' := \mathtt{t}_2 \mid \mu'}$$

(E-Assign1)

$$\frac{\mathtt{t}_2 \mid \mu \longrightarrow \mathtt{t}_2' \mid \mu'}{\mathtt{v}_1 := \mathtt{t}_2 \mid \mu \longrightarrow \mathtt{v}_1 := \mathtt{t}_2' \mid \mu'}$$

(E-Assign2)

... and then returns unit and an updated store:

$$l\!:=\!\mathtt{v}_2\mid \mu\longrightarrow\mathtt{unit}\mid [l\mapsto\mathtt{v}_2]\mu$$

(E-Assign)

A term of the form ref t₁ first evaluates inside t₁ until it becomes a value...

$$\frac{\mathtt{t_1}\mid \mu \longrightarrow \mathtt{t_1'}\mid \mu'}{\mathtt{ref}\ \mathtt{t_1}\mid \mu \longrightarrow \mathtt{ref}\ \mathtt{t_1'}\mid \mu'} \tag{E-Ref}$$

... and then chooses (allocates) a fresh location l, augments the store with a binding from l to v_1 , and returns l:

$$\frac{l \not\in \text{dom}(\mu)}{\text{ref } v_1 \mid \mu \longrightarrow l \mid (\mu, \, l \mapsto v_1)} \tag{E-RefV}$$

Typing Locations

Q: What is the type of a location?

Typing Locations

Q: What is the type of a location?

A: It depends on the store!

E.g., in the store $(l_1 \mapsto unit, l_2 \mapsto unit)$, the term $!l_2$ has type Unit.

But in the store $(l_1 \mapsto \text{unit}, l_2 \mapsto \lambda x : \text{Unit.x})$, the term $!l_2$ has type $\text{Unit} \rightarrow \text{Unit}$.

Typing Locations — first try

Roughly:

$$\frac{\Gamma \vdash \mu(l) : T_1}{\Gamma \vdash l : \text{Ref } T_1}$$

Typing Locations — first try

Roughly:

$$\frac{\Gamma \vdash \mu(l) : T_1}{\Gamma \vdash l : \text{Ref } T_1}$$

More precisely:

$$\frac{\Gamma \mid \mu \vdash \mu(l) : T_1}{\Gamma \mid \mu \vdash l : \text{Ref } T_1}$$

I.e., typing is now a four-place relation (between contexts, stores, terms, and types).

Problem

However, this rule is not completely satisfactory. For one thing, it can make typing derivations very large!

E.g., if

then how big is the typing derivation for $!l_5$?

Problem!

But wait... it gets worse. Suppose

```
(\mu = l_1 \mapsto \lambda x : \text{Nat. } ! l_2 x, l_2 \mapsto \lambda x : \text{Nat. } ! l_1 x),
```

Now how big is the typing derivation for !12?

Store Typings

Observation: a given location in the store is always used to hold values of the same type.

These intended types can be collected into a store typing — a partial function from locations to types.

E.g., for

```
\mu = (l_1 \mapsto \lambda x : \text{Nat. 999},
l_2 \mapsto \lambda x : \text{Nat. } !l_1 \ (!l_1 \ x),
l_3 \mapsto \lambda x : \text{Nat. } !l_2 \ (!l_2 \ x),
l_4 \mapsto \lambda x : \text{Nat. } !l_3 \ (!l_3 \ x),
l_5 \mapsto \lambda x : \text{Nat. } !l_4 \ (!l_4 \ x)),
```

A reasonable store typing would be

$$oldsymbol{\Sigma} = (egin{array}{cccc} oldsymbol{l}_1 & \mapsto & ext{Nat} {
ightarrow} ext{Nat$$

Now, suppose we are given a store typing Σ describing the store μ in which we intend to evaluate some term t. Then we can use Σ to look up the types of locations in t instead of calculating them from the values in μ .

$$\frac{\boldsymbol{\Sigma}(l) = T_1}{\boldsymbol{\Gamma} \mid \boldsymbol{\Sigma} \vdash l : \text{Ref } T_1} \tag{T-Loc}$$

I.e., typing is now a four-place relation between between contexts, store typings, terms, and types.

Final typing rules

$$\frac{\Sigma(l) = T_1}{\Gamma \mid \Sigma \vdash l : \text{Ref } T_1}$$

(T-Loc)

$$\frac{\Gamma \mid \Sigma \vdash \mathsf{t}_1 : \mathsf{T}_1}{\Gamma \mid \Sigma \vdash \mathsf{ref} \ \mathsf{t}_1 : \mathsf{Ref} \ \mathsf{T}_1}$$

(T-REF)

$$\frac{\Gamma \mid \Sigma \vdash \mathtt{t}_1 : \mathsf{Ref} \ \mathtt{T}_{11}}{\Gamma \mid \Sigma \vdash !\mathtt{t}_1 : \mathtt{T}_{11}}$$

(T-DEREF)

$$\frac{\Gamma \mid \Sigma \vdash t_1 : \text{Ref } T_{11} }{\Gamma \mid \Sigma \vdash t_1 := t_2 : \text{Unit}}$$

(T-Assign)

Aside: garbage collection

[...]

Aside: pointer arithmetic

[...]

Exceptions

