
'
&

$
%

CIS 500

Software Foundations

Fall 2002

28 October

CIS 500, 28 October 1

'
&

$
%

Administrivia

� No change to homework rules

� Explaining �! understanding

� Reordering of material:

� Last week: Chapter 14 (references)

� This week: Chapter 15 (subtyping)

� Next week: Chapters 13 (exceptions) and 16 (metatheory of

subtyping)

� Following week: review session, Midterm II

CIS 500, 28 October 2

'
&

$
%

Subtyping

CIS 500, 28 October 3

'
&

$
%

Varieties of Polymorphism

� Parametric polymorphism (ML-style)

� Subtype polymorphism (OO-style)

� Ad-hoc polymorphism (overloading)

CIS 500, 28 October 4



'
&

$
%

Motivation

With our usual typing rule for applications

� ` t1 : T11!T12 � ` t2 : T11

� ` t1 t2 : T12

(T-APP)

the term
(�r:{x:Nat}. r.x) {x=0,y=1}

is not well typed.

CIS 500, 28 October 5

'
&

$
%

Motivation

With our usual typing rule for applications

� ` t1 : T11!T12 � ` t2 : T11

� ` t1 t2 : T12

(T-APP)

the term

(�r:{x:Nat}. r.x) {x=0,y=1}

is not well typed.

This is silly: all we’re doing is passing the function a better argument

than it needs.

CIS 500, 28 October 5-a

'
&

$
%

Subsumption

More generally: some types are better than others, in the sense that a

value of one can always safely be used where a value of the other is

expected.

We can formalize this intuition by introducing

1. a subtyping relation between types, written S <: T

2. a rule of subsumption stating that, if S <: T, then any value of type S

can also be regarded as having type T

� ` t : S S <: T

� ` t : T

(T-SUB)

CIS 500, 28 October 6

'
&

$
%

Example

We will define subtyping between record types so that, for example,

{x:Nat, y:Nat} <: {x:Nat}

So, by subsumption,

` {x=0,y=1} : {x:Nat}

and hence

(�r:{x:Nat}. r.x) {x=0,y=1}

is well typed.

CIS 500, 28 October 7



'
&

$
%

The Subtype Relation: General rules

S <: S (S-REFL)

S <: U U <: T

S <: T

(S-TRANS)

CIS 500, 28 October 8

'
&

$
%

The Subtype Relation: Records

“Width subtyping” (forgetting fields on the right):

{li:Ti
i21::n+k} <: {li:Ti
i2 1::n} (S-RCDWIDTH)

Intuition: {x:Nat} is the type of all records with at least a numeric x field.

Note that the record type with more fields is a subtype of the record

type with fewer fields.

Reason: the type with more fields places a stronger constraint on values,

so it describes fewer values.

CIS 500, 28 October 9

'
&

$
%
“Depth subtyping” within fields:

for each i Si <: Ti

{li:Si
i21::n} <: {li:Ti
i2 1::n}

(S-RCDDEPTH)

CIS 500, 28 October 10

'
&

$
%

Example

S-RCDWIDTH

{a:Nat,b:Nat} <: {a:Nat}

S-RCDWIDTH

{m:Nat} <: {}

S-RCDDEPTH

{x:{a:Nat,b:Nat},y:{m:Nat}} <: {x:{a:Nat},y:{}}

CIS 500, 28 October 11



'
&

$
%

The Subtype Relation: Records

Permutation of fields:

{kj:Sj
j21::n} is a permutation of {li:Ti
i21::n}

{kj:Sj
j21::n} <: {li:Ti
i2 1::n}

(S-RCDPERM)

By using S-RCDPERM together with S-RCDWIDTH and S-TRANS, we can

drop arbitrary fields within records.

CIS 500, 28 October 12

'
&

$
%

Variations

Real languages often choose not to adopt all of these record subtyping

rules. For example, in Java,

� A subclass may not change the argument or result types of a

method of its superclass (i.e., no depth subtyping)

� Each class has just one superclass (“single inheritance” of classes)

�! each class member (field or method) can be assigned a

single index, adding new indices “on the right” as more

members are added in subclasses

(i.e., no permutation for classes)

� A class may implement multiple interfaces (“single inheritance” of

interfaces)

(i.e., permutation is allowed when talking about interfaces)

CIS 500, 28 October 13

'
&

$
%

The Subtype Relation: Arrow types

T1 <: S1 S2 <: T2

S1!S2 <: T1!T2

(S-ARROW)

Note the order of T1 and S1 in the first premise. The subtype relation is

contravariant in the left-hand sides of arrows and covariant in the

right-hand sides.

Intuition: if we have a function f of type S1!S2, then we know that f

accepts elements of type S1; clearly, f will also accept elements of any

subtype T1 of S1. The type of f also tells us that it returns elements of

type S2; we can also view these results belonging to any supertype T2 of

S2. That is, any function f of type S1!S2 can also be viewed as having

type T1!T2 .

CIS 500, 28 October 14

'
&

$
%

The Subtype Relation: Top

It is convenient to have a type that is a supertype of every type. We

introduce a new type constant Top, plus a rule that makes Top a

maximum element of the subtype relation.

S <: Top (S-TOP)

Cf. Object in Java.

CIS 500, 28 October 15



'
&

$
%

Properties

[board]

CIS 500, 28 October 16


