

Administrivia

- Prof. Pierce out of town Nov. 5-14
- No office hours Nov 5, 7, 12, or 14
- Next Wednesday: guest lecturer (on Chapter 16)
- Following Monday: review session (led by Anne and Jim)
- 3PM recitation cancelled on Nov 11 - go to Max's in Towne 307 instead
- Following Wednesday: Midterm II
- There will be class on the Wednesday before Thanksgiving (Nov. 27)

CIS 500, 30 October

Subtyping

Intuitions: S <: T means...

* "An element of S may safely be used wherever an element of T is expected." (Official.)
- S is "better than" T.
- S is a subset of T.
- S is more informative / richer than T .

Subsumption Rule

$$
\frac{\Gamma \vdash \mathrm{t}: \mathrm{S} \quad \mathrm{~S}<: \mathrm{T}}{\Gamma \vdash \mathrm{t}: \mathrm{T}}
$$

(T-SUB)

Properties

CIS 500, 30 October
Safety
Statements of progress and preservation theorems are unchanged.
Proofs become a bit more involved, because the typing relation is no
longer syntax directed.
CIS 500,30 October

Subsumption case

Case T-SUB: $\quad \mathrm{t}: \mathrm{S} \quad \mathrm{S}<: \mathrm{T}$
By the induction hypothesis, $\Gamma \vdash \mathrm{t}^{\prime}$: S. By T-SUB, $\Gamma \vdash \mathrm{t}: \mathrm{T}$.

Preservation

Theorem: If $\Gamma \vdash \mathrm{t}: \mathrm{T}$ and $\mathrm{t} \longrightarrow \mathrm{t}^{\prime}$, then $\Gamma \vdash \mathrm{t}^{\prime}: \mathrm{T}$.
Proof: By induction on typing derivations.
(Which cases are hard?)

Subsumption case

Case T-SUB: $\quad \mathrm{t}: \mathrm{S} \quad \mathrm{S}<: \mathrm{T}$
By the induction hypothesis, $\Gamma \vdash \mathrm{t}^{\prime}: \mathrm{S}$. By $\mathrm{T}-\mathrm{SUB}, \Gamma \vdash \mathrm{t}: \mathrm{T}$.

Not hard!

Application case

Case T-App:

$$
\mathrm{t}=\mathrm{t}_{1} \mathrm{t}_{2} \quad \Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11} \quad \mathrm{~T}=\mathrm{T}_{12}
$$

From the evaluation rules (i.e., strictly speaking, from the inversion lemma for evaluation), there are three rules by which $t \longrightarrow t^{\prime}$ can be derived: E-App1, E-App2, and E-AppABs. Proceed by cases.

$$
\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}
$$

$$
\Gamma \vdash \mathrm{t}_{1} \mathrm{t}_{2}: \mathrm{T}_{12}
$$

Case T-App (CONTINUED):

$$
\mathrm{t}=\mathrm{t}_{1} \mathrm{t}_{2} \quad \Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11} \quad \mathrm{~T}=\mathrm{T}_{12}
$$

Subcase E-App2: $\quad \mathrm{t}_{1}=\mathrm{v}_{1} \quad \mathrm{t}_{2} \longrightarrow \mathrm{t}_{2}^{\prime} \quad \mathrm{t}^{\prime}=\mathrm{v}_{1} \quad \mathrm{t}_{2}^{\prime}$
Similar.

$$
\begin{gathered}
\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11} \\
\Gamma \vdash \mathrm{t}_{1} \mathrm{t}_{2}: \mathrm{T}_{12} \\
\frac{\mathrm{t}_{2} \longrightarrow \mathrm{t}_{2}^{\prime}}{\mathrm{v}_{1} \mathrm{t}_{2} \longrightarrow \mathrm{v}_{1} \mathrm{t}_{2}^{\prime}}
\end{gathered} \quad \text { (T-APP) }
$$

Application case

Case T-App:

$$
\mathrm{t}=\mathrm{t}_{1} \mathrm{t}_{2} \quad \Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11} \quad \mathrm{~T}=\mathrm{T}_{12}
$$

From the evaluation rules (i.e., strictly speaking, from the inversion lemma for evaluation), there are three rules by which $t \longrightarrow t^{\prime}$ can be derived: E-App1, E-App2, and E-AppABs. Proceed by cases.
Subcase E-App1:
$\mathrm{t}_{1} \longrightarrow \mathrm{t}_{1}^{\prime}$
$\mathrm{t}^{\prime}=\mathrm{t}_{1}^{\prime} \mathrm{t}_{2}$

The result follows from the induction hypothesis and T-APP.

$$
\begin{gathered}
\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11} \\
\Gamma \vdash \mathrm{t}_{1} \mathrm{t}_{2}: \mathrm{T}_{12} \\
\frac{\mathrm{t}_{1} \longrightarrow \mathrm{t}_{1}^{\prime}}{\mathrm{t}_{1} \mathrm{t}_{2} \longrightarrow \mathrm{t}_{1}^{\prime} \mathrm{t}_{2}}
\end{gathered}
$$

(T-APP)
(E-App1)

CIS 500, 30 October

Case T-App (CONTINUED):
$\mathrm{t}=\mathrm{t}_{1} \mathrm{t}_{2} \quad \Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11} \quad \mathrm{~T}=\mathrm{T}_{12}$

Subcase E-AppABS: $\quad \mathrm{t}_{1}=\lambda \mathrm{x}: \mathrm{S}_{11} . \mathrm{t}_{12} \quad \mathrm{t}_{2}=\mathrm{v}_{2} \quad \mathrm{t}^{\prime}=\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}$
By the inversion lemma for the typing relation...
$\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}$

$$
\Gamma \vdash \mathrm{t}_{1} \mathrm{t}_{2}: \mathrm{T}_{12}
$$

$\left(\lambda \mathrm{x}: \mathrm{T}_{11} \cdot \mathrm{t}_{12}\right) \mathrm{v}_{2} \longrightarrow\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}$
(E-AppAbs)
Case T-APP (CONTINUED):

$\mathrm{t}=\mathrm{t}_{1} \quad \mathrm{t}_{2} \quad \Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11} \quad \mathrm{~T}=\mathrm{T}_{12}$
Subcase E-APPABS: $\quad \mathrm{t}_{1}=\lambda \mathrm{x}: \mathrm{S}_{11} \cdot \mathrm{t}_{12} \quad \mathrm{t}_{2}=\mathrm{v}_{2} \quad \mathrm{t}^{\prime}=\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}$

By the inversion lemma for the typing relation... $\mathrm{T}_{11}<\mathrm{S}_{11}$ and $\Gamma, \mathrm{x}: \mathrm{S}_{11} \vdash \mathrm{t}_{12}: \mathrm{T}_{12}$.

$$
\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}
$$

$$
\left(\lambda \mathrm{x}: \mathrm{T}_{11} \cdot \mathrm{t}_{12}\right) \mathrm{v}_{2} \longrightarrow\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}
$$

```
Case T-App (continUed):
\[
\mathrm{t}=\mathrm{t}_{1} \mathrm{t}_{2} \quad \Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11} \quad \mathrm{~T}=\mathrm{T}_{12}
\]
```

Subcase E-APPABS:

$$
\mathrm{t}_{1}=\lambda \mathrm{x}: \mathrm{S}_{11} \cdot \mathrm{t}_{12} \quad \mathrm{t}_{2}=\mathrm{v}_{2} \quad \mathrm{t}^{\prime}=\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}
$$

By the inversion lemma for the typing relation... $\mathrm{T}_{11} \ll \mathrm{~S}_{11}$ and $\Gamma, \mathrm{x}: \mathrm{S}_{11} \vdash \mathrm{t}_{12}: \mathrm{T}_{12}$.
By T-SUB, $\Gamma \vdash \mathrm{t}_{2}: \mathrm{S}_{11}$.

$$
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}}{\Gamma \vdash \mathrm{t}_{1} \mathrm{t}_{2}: \mathrm{T}_{12}}
$$

$$
\left(\lambda \mathrm{x}: \mathrm{T}_{11} \cdot \mathrm{t}_{12}\right) \mathrm{v}_{2} \longrightarrow\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}
$$

Inversion Lemma

Lemma: If $\Gamma \vdash \lambda \mathrm{x}: \mathrm{S}_{1} . \mathrm{s}_{2}: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$, then $\mathrm{T}_{1}<: \mathrm{S}_{1}$ and $\Gamma, \mathrm{x}: \mathrm{S}_{1} \vdash \mathrm{~s}_{2}: \mathrm{T}_{2}$.
Proof: Induction on typing derivations.

By the inversion lemma for the typing relation... $\mathrm{T}_{11} \ll \mathrm{~S}_{11}$ and $\Gamma, \mathrm{x}: \mathrm{S}_{11} \vdash \mathrm{t}_{12}: \mathrm{T}_{12}$.

By T-SUB, $\Gamma \vdash \mathrm{t}_{2}: \mathrm{S}_{11}$.
By the substitution lemma, $\Gamma \vdash \mathrm{t}^{\prime}: \mathrm{T}_{12}$, and we are done.

$$
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}}{\Gamma \vdash \mathrm{t}_{1} \mathrm{t}_{2}: \mathrm{T}_{12}}
$$

$\left(\lambda \mathrm{x}: \mathrm{T}_{11}, \mathrm{t}_{12}\right) \mathrm{v}_{2} \longrightarrow\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}$
(E-AppABS)

Inversion Lemma

Lemma: If $\Gamma \vdash \lambda \mathrm{x}: \mathrm{S}_{1} . \mathrm{s}_{2}: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$, then $\mathrm{T}_{1}<: \mathrm{S}_{1}$ and $\Gamma, \mathrm{x}: \mathrm{S}_{1} \vdash \mathrm{~s}_{2}: \mathrm{T}_{2}$.
Proof: Induction on typing derivations.
Case T-SUB: $\quad \lambda \mathrm{x}: \mathrm{S}_{1} . \mathrm{S}_{2}: \mathrm{U} \quad \mathrm{U}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$
We want to say "By the induction hypothesis...", but the IH does not apply (we do not know that S is an arrow type).

Inversion Lemma

Lemma: If $\Gamma \vdash \lambda \mathrm{x}: \mathrm{S}_{1} . \mathrm{s}_{2}: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$, then $\mathrm{T}_{1}<: \mathrm{S}_{1}$ and $\Gamma, \mathrm{x}: \mathrm{S}_{1} \vdash \mathrm{~s}_{2}: \mathrm{T}_{2}$. Proof: Induction on typing derivations.

Case T-SUB: $\quad \lambda x: S_{1} . S_{2}: U \quad U<: T_{1} \rightarrow T_{2}$
We want to say "By the induction hypothesis...", but the $I H$ does not apply (we do not know that S is an arrow type). Need another lemma...

Lemma: If $\mathrm{U}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$, then U has the form $\mathrm{U}_{1} \rightarrow \mathrm{U}_{2}$, with $\mathrm{T}_{1}<\mathrm{U}_{1}$ and $U_{2}<: T_{2}$. (Proof: by induction on subtyping derivations.)

By this lemma, we know $U=U_{1} \rightarrow U_{2}$, with $T_{1}<: U_{1}$ and $U_{2}<: T_{2}$.

Inversion Lemma

Lemma: If $\Gamma \vdash \lambda \mathrm{x}: \mathrm{S}_{1} . \mathrm{s}_{2}: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$, then $\mathrm{T}_{1}<: \mathrm{S}_{1}$ and $\Gamma, \mathrm{x}: \mathrm{S}_{1} \vdash \mathrm{~s}_{2}: \mathrm{T}_{2}$.
Proof: Induction on typing derivations.
Case T-SUB: $\quad \lambda \mathrm{x}: \mathrm{S}_{1} . \mathrm{S}_{2}: \mathrm{U} \quad \mathrm{U}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$
We want to say "By the induction hypothesis...", but the \mathbb{H} does not apply (we do not know that S is an arrow type). Need another lemma...

Lemma: If $U<: T_{1} \rightarrow T_{2}$, then U has the form $U_{1} \rightarrow U_{2}$, with $T_{1}<: U_{1}$
and $\mathrm{U}_{2}<: \mathrm{T}_{2}$. (Proof: by induction on subtyping derivations.)

Lemma: If $\Gamma \vdash \lambda \mathrm{x}: \mathrm{S}_{1} . \mathrm{s}_{2}: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$, then $\mathrm{T}_{1}<: \mathrm{S}_{1}$ and $\Gamma, \mathrm{x}: \mathrm{S}_{1} \vdash \mathrm{~s}_{2}: \mathrm{T}_{2}$.
Proof: Induction on typing derivations.

Case T-SUB: $\quad \lambda x: S_{1} . S_{2}: U \quad U<: T_{1} \rightarrow T_{2}$
We want to say "By the induction hypothesis...", but the IH does not apply (we do not know that S is an arrow type). Need another lemma...

Lemma: If $\mathrm{U}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$, then U has the form $\mathrm{U}_{1} \rightarrow \mathrm{U}_{2}$, with $\mathrm{T}_{1}<: \mathrm{U}_{1}$ and $\mathrm{U}_{2}<: \mathrm{T}_{2}$. (Proof: by induction on subtyping derivations.)

By this lemma, we know $U=U_{1} \rightarrow U_{2}$, with $T_{1}<: U_{1}$ and $U_{2}<: T_{2}$.
The $I H$ now applies, yielding $U_{1}<: S_{1}$ and $\Gamma, x: S_{1} \vdash \mathrm{~s}_{2}: U_{2}$.

Inversion Lemma

Lemma: If $\Gamma \vdash \lambda \mathrm{x}: \mathrm{S}_{1} . \mathrm{S}_{2}: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$, then $\mathrm{T}_{1}<: \mathrm{S}_{1}$ and $\Gamma, \mathrm{x}: \mathrm{S}_{1} \vdash \mathrm{~s}_{2}: \mathrm{T}_{2}$.
Proof: Induction on typing derivations.
Case T-SUB: $\quad \lambda x: S_{1} \cdot S_{2}: U \quad U<: T_{1} \rightarrow T_{2}$
We want to say "By the induction hypothesis...", but the H does not apply (we do not know that S is an arrow type). Need another lemma...

Lemma: If $U<: T_{1} \rightarrow T_{2}$, then U has the form $U_{1} \rightarrow U_{2}$, with $T_{1}<: U_{1}$ and $U_{2}<: T_{2}$. (Proof: by induction on subtyping derivations.)

By this lemma, we know $U=U_{1} \rightarrow U_{2}$, with $T_{1}<: U_{1}$ and $U_{2}<: T_{2}$.
The $\| H$ now applies, yielding $U_{1}<: S_{1}$ and $\Gamma, x: S_{1} \vdash \mathrm{~s}_{2}: U_{2}$.
From $U_{1}<: S_{1}$ and $T_{1}<: U_{1}$, rule $S-T R A N S$ gives $T_{1}<: S_{1}$.

Inversion Lemma

Lemma: If $\Gamma \vdash \lambda \mathrm{x}: \mathrm{S}_{1} . \mathrm{s}_{2}: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$, then $\mathrm{T}_{1}<: \mathrm{S}_{1}$ and $\Gamma, \mathrm{x}: \mathrm{S}_{1} \vdash \mathrm{~s}_{2}: \mathrm{T}_{2}$.
Proof: Induction on typing derivations.
Case T-SUB: $\quad \lambda \mathrm{x}: \mathrm{S}_{1} . \mathrm{s}_{2}: \mathrm{U} \quad \mathrm{U}<\mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$
We want to say "By the induction hypothesis...", but the \mathbb{H} does not apply (we do not know that S is an arrow type). Need another lemma...

Lemma: If $\mathrm{U}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$, then U has the form $\mathrm{U}_{1} \rightarrow \mathrm{U}_{2}$, with $\mathrm{T}_{1}<: \mathrm{U}_{1}$ and $\mathrm{U}_{2}<: \mathrm{T}_{2}$. (Proof: by induction on subtyping derivations.)

By this lemma, we know $U=U_{1} \rightarrow U_{2}$, with $T_{1}<: U_{1}$ and $U_{2}<: T_{2}$.
The \mathbb{H} now applies, yielding $U_{1}<: S_{1}$ and $\Gamma, \mathrm{x}: \mathrm{S}_{1} \vdash \mathrm{~s}_{2}: \mathrm{U}_{2}$.
From $U_{1}<: S_{1}$ and $T_{1}<: U_{1}$, rule S-TRANS gives $T_{1}<: S_{1}$.
From $\Gamma, \mathrm{x}: \mathrm{S}_{1} \vdash \mathrm{~s}_{2}: \mathrm{U}_{2}$ and $\mathrm{U}_{2}<\mathrm{T}_{2}$, rule T-SUB gives $\Gamma, \mathrm{x}: \mathrm{S}_{1} \vdash \mathrm{~s}_{2}: \mathrm{T}_{2}$, and we are done.

CIS 500, 30 October

Ascription and Casting

Ordinary ascription:

$$
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}}{\Gamma \vdash \mathrm{t}_{1} \text { as } \mathrm{T}: \mathrm{T}}
$$

(T-Ascribe)

$$
\mathrm{v}_{1} \text { as } \mathrm{T} \longrightarrow \mathrm{v}_{1}
$$

(E-Ascribe)

Ascription and Casting

Ordinary ascription:

$\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}}{\Gamma \vdash \mathrm{t}_{1} \text { as } \mathrm{T}: \mathrm{T}}$	(T-ASCRIBE)
V_{1} as $\mathrm{T} \longrightarrow \mathrm{v}_{1}$	(E-ASCRIBE)

Casting (cf. Java):
$\frac{\Gamma \vdash \mathrm{t}_{1}: S}{\Gamma \vdash \mathrm{t}_{1} \text { as } \mathrm{T}: \mathrm{T}}$
$\frac{\vdash \mathrm{v}_{1}: \mathrm{T}}{\mathrm{v}_{1} \text { as } \mathrm{T} \longrightarrow \mathrm{v}_{1}}$
(T-CAST)
(E-CAST)

CIS 500, 30 October

Subtyping and Lists

$$
\frac{\mathrm{S}_{1}<: \mathrm{T}_{1}}{\text { List } \mathrm{S}_{1}<: \text { List } \mathrm{T}_{1}}
$$

(S-LIST)
I.e., List is a covariant type constructor.

Subtyping and Variants

| $\left\langle l_{i}: T_{i} i \in 1 \ldots n\right\rangle$ | $\left\langle I_{i}: T_{i}{ }^{i} \in 1 \ldots n+k\right\rangle$ |
| ---: | :--- |\quad (S-VARIANTWIDTH)

$\frac{\left\langle k_{j}: S_{j}{ }^{j \in 1 \ldots n}\right\rangle \text { is a permutation of }\left\langle l_{i}: T_{i}{ }^{i} \in 1 \ldots n\right.}{\left\langle k_{j}: S_{j}{ }^{j \in 1 \ldots n}\right\rangle\left\langle:\left\langle l_{i}: T_{i}{ }^{i \in 1 \ldots n}\right\rangle\right.} \quad$ (S-VARIANTPERM)

$$
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{1}}{\Gamma \vdash\left\langle\mathrm{l}_{1}=\mathrm{t}_{1}\right\rangle:\left\langle\mathrm{l}_{1}: \mathrm{T}_{1}\right\rangle}
$$

(T-VARIANT)

CIS 500, 30 October

Subtyping and References

$$
\mathrm{S}_{1}<: \mathrm{T}_{1} \quad \mathrm{~T}_{1}<: \mathrm{S}_{1}
$$

$$
(S-R E F)
$$

l.e., Ref is not a covariant (nor a contravariant) type constructor.
Subtyping and Arrays
Similarly...
$\frac{\mathrm{S}_{1}<: \mathrm{T}_{1} \quad \mathrm{~T}_{1}<: \mathrm{S}_{1}}{\text { Array } \mathrm{S}_{1}<: \text { Array } \mathrm{T}_{1}}$
(S-ARRAY)
CIS 500,30 October

References again

Observation: a value of type Ref T can be used in two different ways: as a source for values of type T and as a sink for values of type T.

Subtyping and Arrays

Similarly...

$\mathrm{S}_{1}<: \mathrm{T}_{1} \quad \mathrm{~T}_{1}<: \mathrm{S}_{1}$
Array $\mathrm{S}_{1}<:$ Array T_{1}

$\mathrm{S}_{1}<: \mathrm{T}_{1}$
Array $\mathrm{S}_{1}<:$ Array T_{1}

(S-ARRAYJAVA)

This is regarded (even by the Java designers) as a mistake in the design.

References again

Observation: a value of type Ref T can be used in two different ways: as a source for values of type T and as a sink for values of type T.
Idea: Split Ref T into three parts:

- Source T: reference cell with "read cabability"
- Sink T: reference cell with "write cabability"
- Ref T: cell with both capabilities

Capabilities

Other kinds of capabilities (e.g., send and receive capabilities on communication channels, encrypt/decrypt capabilities of cryptographic keys, ...) can be treated similarly.

Subtyping rules

$$
\frac{\mathrm{S}_{1}<: \mathrm{T}_{1}}{\text { Source } \mathrm{S}_{1}<: \text { Source } \mathrm{T}_{1}}
$$

$\frac{\mathrm{T}_{1}<: \mathrm{S}_{1}}{\text { Sink } \mathrm{S}_{1}<: \operatorname{Sink~} \mathrm{T}_{1}}$

Ref $\mathrm{T}_{1}<$: Source T_{1}

Ref $\mathrm{T}_{1}<$: Sink T_{1}
(S-REFSINK)

CIS 500, 30 October

Coercion semantics

[skip]

Intersection Types

Intersection types permit a very flexible form of finitary overloading.

$$
+:(\text { Nat } \rightarrow \text { Nat } \rightarrow \text { Nat }) \wedge(\text { Float } \rightarrow \text { Float } \rightarrow \text { Float })
$$

This form of overloading is extremely powerful.
Every strongly normalizing untyped lambda-term can be typed in the simply typed lambda-calculus with intersection types.
\longrightarrow type reconstruction problem is undecidable
Intersection types have not been used much in language designs (too powerful!), but are being intensively investigated as type systems for intermediate languages in highly optimizing compilers (cf. Church project).

Union types

Union types are also useful.
$T_{1} \vee T_{2}$ is an untagged (non-disjoint) union of T_{1} and T_{2}
\longrightarrow no case construct. The only operations we can safely perform on elements of $T_{1} \backslash / T 2$ are ones that make sense for both T_{1} and T_{2}.
N.b.: untagged union types in C are a source of type safety violations precisely because they ignores this restriction, allowing any operation on an element of $T_{1} \vee T_{2}$ that makes sense for either T_{1} or T_{2}.

Union types are being used recently in type systems for XML processing languages (cf. XDuce, Xtatic).

