
'
&

$
%

CIS 500

Software Foundations

Fall 2002

30 October

CIS 500, 30 October 1

'
&

$
%

Administrivia

� Prof. Pierce out of town Nov. 5 – 14

� No office hours Nov 5, 7, 12, or 14

� Next Wednesday: guest lecturer (on Chapter 16)

� Following Monday: review session (led by Anne and Jim)

� 3PM recitation cancelled on Nov 11 – go to Max’s in Towne 307

instead

� Following Wednesday: Midterm II

� There will be class on the Wednesday before Thanksgiving (Nov. 27)

CIS 500, 30 October 2

'
&

$
%

Review

CIS 500, 30 October 3

'
&

$
%

Subtyping

Intuitions: S <: T means...

� “An element of S may safely be used wherever an element of T is

expected.” (Official.)

� S is “better than” T.

� S is a subset of T.
� S is more informative / richer than T.

CIS 500, 30 October 4

'
&

$
%

Subtype relation

S <: S (S-REFL)

S <: U U <: T

S <: T

(S-TRANS)

{li:Ti
i21::n+k} <: {li:Ti
i2 1::n} (S-RCDWIDTH)

for each i Si <: Ti

{li:Si
i21::n} <: {li:Ti
i2 1::n}

(S-RCDDEPTH)

{kj:Sj
j21::n} is a permutation of {li:Ti
i21::n}

{kj:Sj
j21::n} <: {li:Ti
i2 1::n}

(S-RCDPERM)

CIS 500, 30 October 5

'
&

$
%

T1 <: S1 S2 <: T2

S1!S2 <: T1!T2

(S-ARROW)

S <: Top (S-TOP)

CIS 500, 30 October 6

'
&

$
%

Subsumption Rule

� ` t : S S <: T

� ` t : T

(T-SUB)

CIS 500, 30 October 7

'
&

$
%

Properties

CIS 500, 30 October 8

'
&

$
%

Safety

Statements of progress and preservation theorems are unchanged.

Proofs become a bit more involved, because the typing relation is no

longer syntax directed.

CIS 500, 30 October 9

'
&

$
%

Preservation

Theorem: If � ` t : T and t �! t 0 , then � ` t 0

: T.

Proof: By induction on typing derivations.

(Which cases are hard?)

CIS 500, 30 October 10

'
&

$
%

Subsumption case

Case T-SUB: t : S S <: T

By the induction hypothesis, � ` t 0

: S. By T-SUB, � ` t : T.

CIS 500, 30 October 11

'
&

$
%

Subsumption case

Case T-SUB: t : S S <: T

By the induction hypothesis, � ` t 0

: S. By T-SUB, � ` t : T.

Not hard!

CIS 500, 30 October 11-a

'
&

$
%

Application case

Case T-APP:

t = t1 t2 � ` t1 : T11!T12 � ` t2 : T11 T = T12

From the evaluation rules (i.e., strictly speaking, from the inversion lemma

for evaluation), there are three rules by which t �! t 0 can be derived:

E-APP1, E-APP2, and E-APPABS. Proceed by cases.
� ` t1 : T11!T12 � ` t2 : T11

� ` t1 t2 : T12

(T-APP)

CIS 500, 30 October 12

'
&

$
%

Application case

Case T-APP:

t = t1 t2 � ` t1 : T11!T12 � ` t2 : T11 T = T12

From the evaluation rules (i.e., strictly speaking, from the inversion lemma

for evaluation), there are three rules by which t �! t 0 can be derived:

E-APP1, E-APP2, and E-APPABS. Proceed by cases.

Subcase E-APP1: t1 �! t 0
1 t 0 = t 0
1 t2

The result follows from the induction hypothesis and T-APP.

� ` t1 : T11!T12 � ` t2 : T11

� ` t1 t2 : T12

(T-APP)

t1 �! t 0
1

t1 t2 �! t 0
1 t2

(E-APP1)

CIS 500, 30 October 12-a

'
&

$
%
Case T-APP (CONTINUED):

t = t1 t2 � ` t1 : T11!T12 � ` t2 : T11 T = T12

Subcase E-APP2: t1 = v1 t2 �! t 0
2 t 0 = v1 t 0
2

Similar.

� ` t1 : T11!T12 � ` t2 : T11

� ` t1 t2 : T12

(T-APP)

t2 �! t 0
2

v1 t2 �! v1 t 0
2

(E-APP2)

CIS 500, 30 October 13

'
&

$
%

Case T-APP (CONTINUED):

t = t1 t2 � ` t1 : T11!T12 � ` t2 : T11 T = T12

Subcase E-APPABS: t1 = �x:S11. t12 t2 = v2 t 0 = [x 7! v2]t12

By the inversion lemma for the typing relation...

� ` t1 : T11!T12 � ` t2 : T11

� ` t1 t2 : T12

(T-APP)

(�x:T11.t12) v2 �! [x 7! v2]t12 (E-APPABS)

CIS 500, 30 October 14

'
&

$
%

Case T-APP (CONTINUED):

t = t1 t2 � ` t1 : T11!T12 � ` t2 : T11 T = T12

Subcase E-APPABS: t1 = �x:S11. t12 t2 = v2 t 0 = [x 7! v2]t12

By the inversion lemma for the typing relation... T11 <: S11 and

�; x:S11 ` t12 : T12 .
� ` t1 : T11!T12 � ` t2 : T11

� ` t1 t2 : T12

(T-APP)

(�x:T11.t12) v2 �! [x 7! v2]t12 (E-APPABS)

CIS 500, 30 October 14-a

'
&

$
%

Case T-APP (CONTINUED):

t = t1 t2 � ` t1 : T11!T12 � ` t2 : T11 T = T12

Subcase E-APPABS: t1 = �x:S11. t12 t2 = v2 t 0 = [x 7! v2]t12

By the inversion lemma for the typing relation... T11 <: S11 and

�; x:S11 ` t12 : T12 .

By T-SUB, � ` t2 : S11 .

� ` t1 : T11!T12 � ` t2 : T11

� ` t1 t2 : T12

(T-APP)

(�x:T11.t12) v2 �! [x 7! v2]t12 (E-APPABS)

CIS 500, 30 October 14-b

'
&

$
%
Case T-APP (CONTINUED):

t = t1 t2 � ` t1 : T11!T12 � ` t2 : T11 T = T12

Subcase E-APPABS: t1 = �x:S11. t12 t2 = v2 t 0 = [x 7! v2]t12

By the inversion lemma for the typing relation... T11 <: S11 and

�; x:S11 ` t12 : T12 .

By T-SUB, � ` t2 : S11 .

By the substitution lemma, � ` t 0

: T12 , and we are done.

� ` t1 : T11!T12 � ` t2 : T11

� ` t1 t2 : T12

(T-APP)

(�x:T11.t12) v2 �! [x 7! v2]t12 (E-APPABS)

CIS 500, 30 October 14-c

'
&

$
%

Inversion Lemma

Lemma: If � ` �x:S1.s2 : T1!T2 , then T1 <: S1 and �; x:S1 ` s2 : T2 .

Proof: Induction on typing derivations.

CIS 500, 30 October 15

'
&

$
%

Inversion Lemma

Lemma: If � ` �x:S1.s2 : T1!T2 , then T1 <: S1 and �; x:S1 ` s2 : T2 .

Proof: Induction on typing derivations.

Case T-SUB: �x:S1.s2 : U U <: T1!T2

We want to say “By the induction hypothesis...”, but the IH does not

apply (we do not know that S is an arrow type).

CIS 500, 30 October 15-a

'
&

$
%

Inversion Lemma

Lemma: If � ` �x:S1.s2 : T1!T2 , then T1 <: S1 and �; x:S1 ` s2 : T2 .

Proof: Induction on typing derivations.

Case T-SUB: �x:S1.s2 : U U <: T1!T2

We want to say “By the induction hypothesis...”, but the IH does not

apply (we do not know that S is an arrow type). Need another lemma...

Lemma: If U <: T1!T2 , then U has the form U1!U2, with T1 <: U1

and U2 <: T2 . (Proof: by induction on subtyping derivations.)

CIS 500, 30 October 15-b

'
&

$
%

Inversion Lemma

Lemma: If � ` �x:S1.s2 : T1!T2 , then T1 <: S1 and �; x:S1 ` s2 : T2 .

Proof: Induction on typing derivations.

Case T-SUB: �x:S1.s2 : U U <: T1!T2

We want to say “By the induction hypothesis...”, but the IH does not

apply (we do not know that S is an arrow type). Need another lemma...

Lemma: If U <: T1!T2 , then U has the form U1!U2, with T1 <: U1

and U2 <: T2 . (Proof: by induction on subtyping derivations.)

By this lemma, we know U = U1!U2 , with T1 <: U1 and U2 <: T2 .

CIS 500, 30 October 15-c

'
&

$
%

Inversion Lemma

Lemma: If � ` �x:S1.s2 : T1!T2 , then T1 <: S1 and �; x:S1 ` s2 : T2 .

Proof: Induction on typing derivations.

Case T-SUB: �x:S1.s2 : U U <: T1!T2

We want to say “By the induction hypothesis...”, but the IH does not

apply (we do not know that S is an arrow type). Need another lemma...

Lemma: If U <: T1!T2 , then U has the form U1!U2, with T1 <: U1

and U2 <: T2 . (Proof: by induction on subtyping derivations.)

By this lemma, we know U = U1!U2 , with T1 <: U1 and U2 <: T2 .

The IH now applies, yielding U1 <: S1 and �; x:S1 ` s2 : U2 .

CIS 500, 30 October 15-d

'
&

$
%

Inversion Lemma

Lemma: If � ` �x:S1.s2 : T1!T2 , then T1 <: S1 and �; x:S1 ` s2 : T2 .

Proof: Induction on typing derivations.

Case T-SUB: �x:S1.s2 : U U <: T1!T2

We want to say “By the induction hypothesis...”, but the IH does not

apply (we do not know that S is an arrow type). Need another lemma...

Lemma: If U <: T1!T2 , then U has the form U1!U2, with T1 <: U1

and U2 <: T2 . (Proof: by induction on subtyping derivations.)

By this lemma, we know U = U1!U2 , with T1 <: U1 and U2 <: T2 .

The IH now applies, yielding U1 <: S1 and �; x:S1 ` s2 : U2 .

From U1 <: S1 and T1 <: U1 , rule S-TRANS gives T1 <: S1 .

CIS 500, 30 October 15-e

'
&

$
%

Inversion Lemma

Lemma: If � ` �x:S1.s2 : T1!T2 , then T1 <: S1 and �; x:S1 ` s2 : T2 .

Proof: Induction on typing derivations.

Case T-SUB: �x:S1.s2 : U U <: T1!T2

We want to say “By the induction hypothesis...”, but the IH does not

apply (we do not know that S is an arrow type). Need another lemma...

Lemma: If U <: T1!T2 , then U has the form U1!U2, with T1 <: U1

and U2 <: T2 . (Proof: by induction on subtyping derivations.)

By this lemma, we know U = U1!U2 , with T1 <: U1 and U2 <: T2 .

The IH now applies, yielding U1 <: S1 and �; x:S1 ` s2 : U2 .

From U1 <: S1 and T1 <: U1 , rule S-TRANS gives T1 <: S1 .

From �; x:S1 ` s2 : U2 and U2 <: T2 , rule T-SUB gives �; x:S1 ` s2 : T2 ,

and we are done.

CIS 500, 30 October 15-f

'
&

$
%

Subtyping and Other Features

CIS 500, 30 October 16

'
&

$
%

Ascription and Casting

Ordinary ascription:

� ` t1 : T

� ` t1 as T : T

(T-ASCRIBE)

v1 as T �! v1 (E-ASCRIBE)

CIS 500, 30 October 17

'
&

$
%

Ascription and Casting

Ordinary ascription:

� ` t1 : T

� ` t1 as T : T

(T-ASCRIBE)

v1 as T �! v1 (E-ASCRIBE)

Casting (cf. Java):

� ` t1 : S

� ` t1 as T : T

(T-CAST)
` v1 : T

v1 as T �! v1
(E-CAST)

CIS 500, 30 October 17-a

'
&

$
%

Subtyping and Variants

<li:Ti
i21::n> <: <li:Ti
i2 1::n+k> (S-VARIANTWIDTH)

for each i Si <: Ti

<li:Si
i21::n> <: <li:Ti
i2 1::n>

(S-VARIANTDEPTH)

<kj:Sj
j21::n> is a permutation of <li:Ti
i21::n>

<kj:Sj
j21::n> <: <li:Ti
i2 1::n>

(S-VARIANTPERM)

� ` t1 : T1

� ` <l1=t1> : <l1:T1>

(T-VARIANT)

CIS 500, 30 October 18

'
&

$
%

Subtyping and Lists

S1 <: T1

List S1 <: List T1

(S-LIST)

I.e., List is a covariant type constructor.

CIS 500, 30 October 19

'
&

$
%

Subtyping and References

S1 <: T1 T1 <: S1

Ref S1 <: Ref T1

(S-REF)

I.e., Ref is not a covariant (nor a contravariant) type constructor.

CIS 500, 30 October 20

'
&

$
%

Subtyping and Arrays

Similarly...

S1 <: T1 T1 <: S1

Array S1 <: Array T1

(S-ARRAY)

CIS 500, 30 October 21

'
&

$
%

Subtyping and Arrays

Similarly...

S1 <: T1 T1 <: S1

Array S1 <: Array T1

(S-ARRAY)

S1 <: T1

Array S1 <: Array T1

(S-ARRAYJAVA)

This is regarded (even by the Java designers) as a mistake in the design.

CIS 500, 30 October 21-a

'
&

$
%

References again

Observation: a value of type Ref T can be used in two different ways: as

a source for values of type T and as a sink for values of type T.

CIS 500, 30 October 22

'
&

$
%

References again

Observation: a value of type Ref T can be used in two different ways: as

a source for values of type T and as a sink for values of type T.

Idea: Split Ref T into three parts:

� Source T: reference cell with “read cabability”

� Sink T: reference cell with “write cabability”

� Ref T: cell with both capabilities

CIS 500, 30 October 22-a

'
&

$
%

Modified Typing Rules

� j � ` t1 : Source T11

� j � ` !t1 : T11

(T-DEREF)

� j � ` t1 : Sink T11 � j � ` t2 : T11

� j � ` t1:=t2 : Unit

(T-ASSIGN)

CIS 500, 30 October 23

'
&

$
%

Subtyping rules

S1 <: T1

Source S1 <: Source T1

(S-SOURCE)

T1 <: S1

Sink S1 <: Sink T1

(S-SINK)

Ref T1 <: Source T1 (S-REFSOURCE)

Ref T1 <: Sink T1 (S-REFSINK)

CIS 500, 30 October 24

'
&

$
%

Capabilities

Other kinds of capabilities (e.g., send and receive capabilities on

communication channels, encrypt/decrypt capabilities of cryptographic

keys, ...) can be treated similarly.

CIS 500, 30 October 25

'
&

$
%

Coercion semantics

[skip]

CIS 500, 30 October 26

'
&

$
%

Intersection Types

The inhabitants of T1 ^ T2 are terms belonging to both S and T—i.e.,

T1 ^ T2 is an order-theoretic meet (greatest lower bound) of T1 and T2.

T1 ^ T2 <: T1 (S-INTER1)

T1 ^ T2 <: T2 (S-INTER2)

S <: T1 S <: T2

S <: T1 ^ T2

(S-INTER3)

S!T1 ^ S!T2 <: S!(T1^T2) (S-INTER4)

CIS 500, 30 October 27

'
&

$
%

Intersection Types

Intersection types permit a very flexible form of finitary overloading.

+ : (Nat!Nat!Nat) ^ (Float!Float!Float)

This form of overloading is extremely powerful.

Every strongly normalizing untyped lambda-term can be typed in

the simply typed lambda-calculus with intersection types.

�! type reconstruction problem is undecidable

Intersection types have not been used much in language designs (too

powerful!), but are being intensively investigated as type systems for

intermediate languages in highly optimizing compilers (cf. Church project).

CIS 500, 30 October 28

'
&

$
%

Union types

Union types are also useful.

T1 _ T2 is an untagged (non-disjoint) union of T1 and T2

�! no case construct. The only operations we can safely perform on

elements of T1\/T2 are ones that make sense for both T1 and T2.

N.b.: untagged union types in C are a source of type safety violations

precisely because they ignores this restriction, allowing any operation on

an element of T1 _ T2 that makes sense for either T1 or T2.

Union types are being used recently in type systems for XML processing

languages (cf. XDuce, Xtatic).

CIS 500, 30 October 29

