
'
&

$
%

CIS 500

Software Foundations

Fall 2002

4 November

CIS 500, 4 November 1



'
&

$
%

Administrivia
� Reminder: Prof. Pierce out of town Nov. 5 – 14

� No office hours Nov 5, 7, 12, or 14

� 3PM recitation cancelled on Nov 11 – go to Max’s in Towne 307

instead

� Next Wednesday: Midterm II

� Covering Chapters 1-16 (concentrating on 9-16), except 12 and 15.6.

� There will be a question about the proof of type safety for the

simply typed lambda-calculus with references. Make sure you

understand it completely.

� In general, the questions on the second midterm will be somewhat

harder/deeper than the first. It will also be somewhat shorter.

CIS 500, 4 November 2



'
&

$
%

Subtyping and Lists

S1 <: T1

List S1 <: List T1

(S-LIST)

I.e., List is a covariant type constructor.

CIS 500, 4 November 3



'
&

$
%

Subtyping and References

S1 <: T1 T1 <: S1

Ref S1 <: Ref T1

(S-REF)

I.e., Ref is not a covariant (nor a contravariant) type constructor.

CIS 500, 4 November 4



'
&

$
%

References again

Observation: a value of type Ref T can be used in two different ways: as

a source for values of type T and as a sink for values of type T.

CIS 500, 4 November 5



'
&

$
%

References again

Observation: a value of type Ref T can be used in two different ways: as

a source for values of type T and as a sink for values of type T.

Idea: Split Ref T into three types:

� Source T: reference cell with “read cabability”

� Sink T: reference cell with “write cabability”

� Ref T: cell with both capabilities

CIS 500, 4 November 5-a



'
&

$
%

Modified Typing Rules

� j � ` t1 : Source T11

� j � ` !t1 : T11

(T-DEREF)

� j � ` t1 : Sink T11 � j � ` t2 : T11

� j � ` t1:=t2 : Unit

(T-ASSIGN)

CIS 500, 4 November 6



'
&

$
%

Subtyping rules

S1 <: T1

Source S1 <: Source T1

(S-SOURCE)

T1 <: S1

Sink S1 <: Sink T1

(S-SINK)

Ref T1 <: Source T1 (S-REFSOURCE)

Ref T1 <: Sink T1 (S-REFSINK)

CIS 500, 4 November 7



'
&

$
%

Capabilities

Other kinds of capabilities (e.g., send and receive capabilities on

communication channels, encrypt/decrypt capabilities of cryptographic

keys, ...) can be treated similarly.

CIS 500, 4 November 8



'
&

$
%

Coercion semantics

[skip]

CIS 500, 4 November 9



'
&

$
%

Intersection Types

The inhabitants of T1 ^ T2 are terms belonging to both S and T—i.e.,

T1 ^ T2 is an order-theoretic meet (greatest lower bound) of T1 and T2.

T1 ^ T2 <: T1 (S-INTER1)

T1 ^ T2 <: T2 (S-INTER2)
S <: T1 S <: T2

S <: T1 ^ T2

(S-INTER3)

S!T1 ^ S!T2 <: S!(T1^T2) (S-INTER4)

CIS 500, 4 November 10



'
&

$
%

Intersection Types

Intersection types permit a very flexible form of finitary overloading.

+ : (Nat!Nat!Nat) ^ (Float!Float!Float)

This form of overloading is extremely powerful.

Every strongly normalizing untyped lambda-term can be typed in

the simply typed lambda-calculus with intersection types.

�! type reconstruction problem is undecidable

Intersection types have not been used much in language designs (too

powerful!), but are being intensively investigated as type systems for

intermediate languages in highly optimizing compilers (cf. Church project).

CIS 500, 4 November 11



'
&

$
%

Union types

Union types are also useful.

T1 _ T2 is an untagged (non-disjoint) union of T1 and T2

No tags �! no case construct. The only operations we can safely

perform on elements of T1\/T2 are ones that make sense for both T1

and T2.

N.b.: untagged union types in C are a source of type safety violations

precisely because they ignores this restriction, allowing any operation on

an element of T1 _ T2 that makes sense for either T1 or T2.

Union types are being used recently in type systems for XML processing

languages (cf. XDuce, Xtatic).

CIS 500, 4 November 12



'
&

$
%

Metatheory of Subtyping

(Preview)

CIS 500, 4 November 13



'
&

$
%

Syntax-directed rules

In the simply typed lambda-calculus (without subtyping), each rule can be

“read from bottom to top” in a straightforward way.

� ` t1 : T11!T12 � ` t2 : T11

� ` t1 t2 : T12

(T-APP)

If we are given some � and some t of the form t1 t2, we can try to

find a type for t by

1. finding (recursively) a type for t1
2. checking that it has the form T11!T12
3. finding (recursively) a type for t2

4. checking that it is the same as T11

CIS 500, 4 November 14



'
&

$
%

Technically, the reason this works is that We can divide the “positions” of

the typing relation into input positions (� and t) and output positions (T).
� For the input positions, all metavariables appearing in the premises

also appear in the conclusion (so we can calculate inputs to the

“subgoals” from the subexpressions of inputs to the main goal)

� For the output positions, all metavariables appearing in the

conclusions also appear in the premises (so we can calculate outputs

from the main goal from the outputs of the subgoals)

� ` t1 : T11!T12 � ` t2 : T11

� ` t1 t2 : T12
(T-APP)

CIS 500, 4 November 15



'
&

$
%

Syntax-directed sets of rules

The second important point about the simply typed lambda-calculus is

that the set of typing rules is syntax-directed, in the sense that, for every

“input” � and t, there one rule that can be used to derive typing

statements involving t.

E.g., if t is an application, then we must proceed by trying to use T-APP.

If we succeed, then we have found a type (indeed, the unique type) for

t. If it fails, then we know that t is not typable.

�! no backtracking!

CIS 500, 4 November 16



'
&

$
%

Non-syntax-directedness of typing

When we extend the system with subtyping, both aspects of

syntax-directedness get broken.

1. The set of typing rules now includes two rules that can be used to

give a type to terms of a given shape (the old one plus T-SUB)

� ` t : S S <: T

� ` t : T

(T-SUB)

2. Worse yet, the new rule T-SUB itself is not syntax directed: the inputs

to the left-hand subgoal are exactly the same as the inputs to the

main goal!

(Hence, if we translated the typing rules naively into a typechecking

function, the case corresponding to T-SUB would cause divergence.)

CIS 500, 4 November 17



'
&

$
%

Non-syntax-directedness of subtyping

Moreover, the subtyping relation is not syntax directed either.

1. There are lots of ways to derive a given subtyping statement.

2. The transitivity rule

S <: U U <: T

S <: T

(S-TRANS)

is badly non-syntax-directed: the premises contain a metavariable (in

an “input position”) that does not appear at all in the conclusion.

To implement this rule naively, we’d have to guess a value for U!

CIS 500, 4 November 18



'
&

$
%

What to do?

CIS 500, 4 November 19



'
&

$
%

What to do?

1. Observation: We don’t need 1000 ways to prove a given typing or

subtyping statement — one is enough.

�! Think more carefully about the typing and subtyping systems to

see where we can get rid of “excess flexibility”

2. Use the resulting intuitions to formulate new “algorithmic” (i.e.,

syntax-directed) typing and subtyping relations

3. Check (i.e., prove) that the algorithmic relations are “the same as”

the original ones in an appropriate sense.

CIS 500, 4 November 19-a



'
&

$
%

What to do?

1. Observation: We don’t need 1000 ways to prove a given typing or

subtyping statement — one is enough.

�! Think more carefully about the typing and subtyping systems to

see where we can get rid of “excess flexibility”

2. Use the resulting intuitions to formulate new “algorithmic” (i.e.,

syntax-directed) typing and subtyping relations

3. Check (i.e., prove) that the algorithmic relations are “the same as”

the original ones in an appropriate sense.

Details: next time.

CIS 500, 4 November 19-b



'
&

$
%

Exceptions (Chapter 14)

CIS 500, 4 November 20



'
&

$
%

Motivation

Most programming languages provide some mechanism for interrupting

the normal flow of control in a program to signal some exceptional

condition.

Note that it is always possible to program without exceptions —

instead of raising an exception, we return None; instead of

returning result x normally, we return 9(x). But now we need to

wrap every function application in a case to find out whether it

returned a result or an exception.

�! much more convenient to build this mechanism into the

language.

CIS 500, 4 November 21



'
&

$
%

Varieties of non-local control

There are many ways of adding “non-local control flow”

� exit(1)

� goto

� setjmp/longjmp

� raise/try (or catch/throw) in many variations

� callcc / continuations

� more esoteric variants (cf. many Scheme papers)

CIS 500, 4 November 22



'
&

$
%

Varieties of non-local control

There are many ways of adding “non-local control flow”

� exit(1)

� goto

� setjmp/longjmp

� raise/try (or catch/throw) in many variations

� callcc / continuations

� more esoteric variants (cf. many Scheme papers)

Let’s begin with the simplest of these.

CIS 500, 4 November 22-a



'
&

$
%

An “abort” primitive

First step: raising exceptions (but not catching them).

t ::= ... terms
error run-time error

Evaluation

error t2 �! error (E-APPERR1)
v1 error �! error (E-APPERR2)

Typing

� ` error : T (T-ERROR)

CIS 500, 4 November 23



'
&

$
%

Typing errors

Note that the typing rule for error allows us to give it any type T.

� ` error : T (T-ERROR)

This means that both

if x>0 then 5 else error
and

if x>0 then true else error

will typecheck.

CIS 500, 4 November 24



'
&

$
%

Syntax-directedness

However this rule

� ` error : T (T-ERROR)

has a problem from the point of view of implementation: it is not

syntax-directed!

CIS 500, 4 November 25



'
&

$
%

An alternative typing rule

In a system with subtyping and a minimal Bot type, we can give error a

better typing:

� ` error : Bot (T-ERROR)

(Of course, what we’ve really done is just pushed the complexity of the

old error rule onto the Bot type! We’ll return to this point later.)

CIS 500, 4 November 26



'
&

$
%

Type safety

The preservation theorem requires no changes when we add error: if a

term of type T reduces to error, that’s fine, since error has every type T.

CIS 500, 4 November 27



'
&

$
%

Type safety

The preservation theorem requires no changes when we add error: if a

term of type T reduces to error, that’s fine, since error has every type T.

Progress, though, requires a litte more care.

CIS 500, 4 November 27-a



'
&

$
%

Progress

First, note that we do not want to extend the set of values to include

error, since this would make our new rule for propagating errors

through applications.

v1 error �! error (E-APPERR2)

overlap with our existing computation rule for applications:

(�x:T11.t12) v2 �! [x 7! v2]t12 (E-APPABS)

e.g., the term

(�x:Nat.0) error@

might evaluate to either 0 (which would be wrong) or error (what we

want).

CIS 500, 4 November 28



'
&

$
%

Progress

Instead, we keep error as a non-value normal form, and refine the

statement of progress to explicitly mention the possibility that terms may

evaluate to error instead of to a value.

THEOREM [PROGRESS]: Suppose t is a closed, well-typed normal

form. Then either t is a value or t = error.

CIS 500, 4 November 29



'
&

$
%

Catching exceptions
t ::= ... terms

try t with t trap errors

Evaluation

try v1 with t2 �! v1 (E-TRYV)

try error with t2

�! t2

(E-TRYERROR)
t1 �! t 0
1

try t1 with t2

�! try t 0
1 with t2

(E-TRY)

CIS 500, 4 November 30



'
&

$
%

Typing

� `t1 : T � `t2 : T

� `try t1 with t2 : T

(T-TRY)

CIS 500, 4 November 31



'
&

$
%

Exceptions carrying values
t ::= ... terms

raise t raise exception

Evaluation

(raise v11) t2 �! raise v11 (E-APPRAISE1)
v1 (raise v21) �! raise v21 (E-APPRAISE2)

t1 �! t 0
1

raise t1 �! raise t 0
1

(E-RAISE)

raise (raise v11)

�! raise v11

(E-RAISERAISE)

CIS 500, 4 November 32



'
&

$
%

try v1 with t2 �! v1 (E-TRYV)

try raise v11 with t2

�! t2 v11

(E-TRYRAISE)

t1 �! t 0
1

try t1 with t2 �! try t 0
1 with t2

(E-TRY)

CIS 500, 4 November 33



'
&

$
%

Typing

� `t1 : Texn

� `raise t1 : T

(T-EXN)

� `t1 : T � `t2 : Texn!T

� `try t1 with t2 : T

(T-TRY)

CIS 500, 4 November 34


