
'

&

$

%

CIS 500

Software Foundations
Fall 2002

6 November

http://www.cis.upenn.edu/∼sweirich/CIS500.ps

CIS 500, 6 November 1

'

&

$

%

In this class we’ll turn the declarative version of subtyping into the
algorithmic version.

The problem was that we don’t have an algorithm to decide when
S <: T or Γ ` t : T . Both sets of rules are not syntax-directed.

CIS 500, 6 November 2

'

&

$

%

Syntax-directed rules

When we say a set of rules is syntax-directed we mean two things:

1. There is exactly one rule in the set that applies to each
syntactic form. (We can tell by the syntax of a term which rule
to use.)

• In order to derive a type for t1t2, we must use T-App.

2. We don’t have to “guess” an input (or output) for any rule.

• To derive a type for t1t2, we need to derive a type for t1 and
a type for t2.

Γ ` t1 : T11 → T12 Γ ` t2 : T11

Γ ` t1t2 : T12 (T-App)

CIS 500, 6 November 3

'

&

$

%

16.1 Algorithmic Subtyping

How do we change the rules deriving S <: T to be syntax-directed?

There are lots of ways to derive a given subtyping statement
S <: T . The general idea is to change this system so that there is

only one way to derive it.

CIS 500, 6 November 4



'

&

$

%

Three rules for records

{li : T i∈1...n+k
i } <: {li : T i∈1...n

i } (S-RcdWidth)

for each i Si <: Ti

{li : Si∈1...n
i } <: {li : T i∈1...n

i } (S-RcdDepth)

{kj : Si∈1...n
j } is a permutation of {li : T i∈1...n

i }
{kj : Si∈1...n

j } <: {li : T i∈1...n
i } (S-RcdPerm)

Which rule do we use to decide if {kj : Sj∈1...m
j } <: {li : T i∈1...n

i } ?

CIS 500, 6 November 5

'

&

$

%

All-in-one

We can replace these three rules by a single rule that does
permutation, width and depth subtyping all at once.

{li∈1...n
i } ⊆ {kj∈1...m

j }
kj = li implies Sj <: Ti

{kj : Sj∈1...m
j } <: {li : T i∈1...n

i } (S-Rcd)

Lemma 1 If S <: T is provable with the 3 separate rules for width,
depth and permutation, it is provable with just S-Rcd.

CIS 500, 6 November 6

'

&

$

%

Other rules

S <: S (S-Refl)

S <: U U <: T
S <: T (S-Trans)

S <: Top (S-Top)

T1 <: S1 S2 <: T2

S1 → S2 <: T1 → T2 (S-Arrow)

What other rules cause difficulty?

CIS 500, 6 November 7

'

&

$

%

Non-syntax-directedness of subtyping

S <: S (S-Refl)

S <: U U <: T
S <: T (S-Trans)

• Both reflexivity and transitivity apply to many inputs,
regardless of their syntactic form.

• Furthermore, transitivity requires that we “guess” a value for
U . This metavariable appears in the premises of the rule (in an
input position) but not in the conclusion.

CIS 500, 6 November 8



'

&

$

%

Just drop them

It turns out that the rest of the subtyping rules are reflexive and
transitive, without explicitly declaring that they are.

Lemma 2 1. S <: S can be derived for every type S without
using S-Refl.

2. If S <: T is derivable, then it can be derived without using
S-Trans.

We don’t need these rules in our system.

CIS 500, 6 November 9

'

&

$

%

Algorithmic Subtyping Rules

7→I S <: Top (SA-Top)

7→I T1 <: S1 7→I S2 <: T2

7→I S1 → S2 <: T1 → T2 (SA-Arrow)

{li∈1...n
i } ⊆ {kj∈1...m

j }
kj = li implies 7→I Sj <: Ti

7→I {kj : Sj∈1...m
j } <: {li : T i∈1...n

i } (SA-Rcd)

CIS 500, 6 November 10

'

&

$

%

Soundness and Completeness

The algorithmic rules are sound if every statement derivable from
the algorithmic rules is derivable from the declarative rules.

The algorithmic rules are complete if every statement derivable
from the declarative rules is derivable from the algorithmic rules.

Proposition 3 S <: T iff 7→I S <: T .

CIS 500, 6 November 11

'

&

$

%

Algorithm

subtype(S, T ) =

if T = Top then true

else if S = S1 → S2 and T = T1 → T2

then subtype(T1, S1) ∧ subtype(S2, T2)
else if S = { kj : Sj

j∈1...m } and T = { li : Ti
i∈1...n }

then { li
i∈1...n } ⊆ { kj

j∈1...m }
∧ for all i there is some

j ∈ 1 . . . m with kj = li

and subtype (Sj , Ti)
else false

Does this pseudocode match the algorithmic rules? Is this function
total?

CIS 500, 6 November 12



'

&

$

%

Why declarative rules?

Why not use the algorithmic rules as the “official definition” of
subtyping?

This does not save us much work as we still need to know that the
rules are reflexive and transitive when we use them.

CIS 500, 6 November 13

'

&

$

%

16.2 Algorithmic Typing

The subsumption rule is not syntax directed:

Γ ` t : S S <: T
Γ ` t : T (T-Sub)

1. This rule could be used for any t.

2. We have to guess T in the subgoal S <: T .

CIS 500, 6 November 14

'

&

$

%

Where is subsumption used?

We can’t just get rid of it. A term like

(λr:{x:N}. r.x){x = 0, y = 1}

is not typeable without subsumption.

.

.

.

` λr. r.x : {x:N} → N

.

.

.

` {x = 0, y = 1} : {x:N, y:N} {x:N, y:N} <: {x:N}
` {x = 0, y = 1} : {x:N} (S-Sub)

` (λr:{x:N}. r.x){x = 0, y = 1} : N
(S-App)

Do we need subsumption anywhere else?

CIS 500, 6 November 15

'

&

$

%

Combine T-Sub with T-App

• Application is the only situation where subsumption is
important.

• Why? It is the only rule where two types must match.

• Every other use of subsumption can be “postponed”. If we use
subsumption before any other rule, we can always rewrite the
derivation so that subsumption is used after that rule.

• Therefore, we can incorporate subsumption with the
application rule, and not lose any expressiveness.

CIS 500, 6 November 16



'

&

$

%

Normalized derivation

Rewrite any derivation of Γ ` t : T into a special form where
T-Sub appears in only two places.

• Just before an application.

• At the very end of the derivation.

CIS 500, 6 November 17

'

&

$

%

Pushing T-Sub around

If we have a (T-Sub) before a use of (T-Abs)

...
Γ, x:S1 ` s2 : S2

...
S2 <: T2

Γ, x:S1 ` s2 : T2
(T-Sub)

Γ ` λx:S1.s2 : S1 → T2
(T-Abs)

we can always switch the order of these rules with a little
rearrangement.

...
Γ, x:S1 ` s2 : S2

Γ ` λx:S1.s2 : S1 → S2
(T-Abs)

S1 <: S1

...
S2 <: T2

S1 → S2 <: S1 → T2

Γ ` λx:S1.s2 : S1 → T2
(T-Sub)

CIS 500, 6 November 18

'

&

$

%

Other rules

There are similar transformations for T-Sub followed by T-Rcd

and for T-Sub followed by T-Proj.

CIS 500, 6 November 19

'

&

$

%

T-Sub followed by T-Sub?

We can combine two uses of (T-Sub) together.

...
Γ ` s : S

...
S <: U

Γ ` s : U
(T-Sub)

...
U <: T

Γ ` s : T
(T-Sub)

...
Γ ` s : S

...
S <: U

...
U <: T

S <: T
(S-Trans)

Γ ` s : T
(T-Sub)

(This is why S <: T must be transitive.)

CIS 500, 6 November 20



'

&

$

%

New Application Rule

Γ 7→I t1 : T11 → T12 Γ 7→I t2 : T2

7→I T2 <: T11

Γ 7→I t1t2 : T12 (TA-App)

We can use subsumption for the type of the argument.

CIS 500, 6 November 21

'

&

$

%

Replacing T-Sub with TA-App (RHS)

...

Γ ` s1 : T11 → T12

...

Γ ` s2 : T2

...

T2 <: T11

Γ ` s2 : T11
(T-Sub)

Γ ` s1s2 : T12
(T-App)

...

Γ ` s1 : T11 → T12

...

Γ ` s2 : T2

...

T2 <: T11

Γ ` s1s2 : T12
(TA-App)

CIS 500, 6 November 22

'

&

$

%

T-Sub before T-App (LHS)

.

.

.

Γ ` s1 : S11 → S12

.

.

.

T11 <: S11

.

.

.

S12 <: T12

S11 → S12 <: T11 → T12
(S-Arrow)

Γ ` s1 : T11 → T12
(T-Sub)

.

.

.

Γ ` s2 : T11

Γ ` s1s2 : T12
(T-App)

.

.

.

Γ ` s1 : S11 → S12

.

..

Γ ` s2 : T11

.

.

.

T11 <: S11

Γ ` s2 : S11
(T-Sub)

Γ ` s1s2 : S12
(T-App)

.

..

S12 <: T12

Γ ` s1s2 : T12
(T-Sub)

CIS 500, 6 November 23

'

&

$

%

x : T ∈ Γ
Γ 7→I x : T (TA-Var)

Γ, x:T1 7→I t2 : T2

Γ 7→I λx:T1.t2 : T1 → T2 (TA-Abs)

Γ 7→I t1 : T1 Γ 7→I t2 : T2

T1 = T11 → T12 7→I T2 <: T11

Γ 7→I t1t2 : T12 (TA-App)

for each i Γ 7→I ti : Ti

Γ 7→I {li = ti . . . ln = tn} : {li : T1 . . . ln : Tn} (TA-Rcd)

Γ : ti : R R = {l1 : T1 . . . ln : Tn}
Γ 7→I t1.li : Ti (TA-Proj)

CIS 500, 6 November 24



'

&

$

%

Soundness and Completeness

As before, we need to argue that the algorithmic rules are sound
and complete with respect to the declarative rules.

Lemma 4 (Soundness) If Γ 7→I t : T then Γ ` t : T .

We can’t prove the straightforward converse of the above lemma
because while the declarative rules could assign many types to t,
the algorithmic rules assign only one. For completeness, we can
prove that the algorithmic rules give us the smallest or (minimal)
possible type.

Lemma 5 (Completeness) If Γ ` t : T then Γ 7→I t : S for some
S <: T .

CIS 500, 6 November 25

'

&

$

%

16.3 Joins and Meets

If we have conditionals or case expressions, we need additional
machinery to support algorithmic subtyping.

Γ ` t1 : Bool Γ ` t2 : T Γ ` t3 : T

Γ ` if t1 then t2 else t3 : T

With subsumption, there may be many ways of giving the two
branches the same type.

CIS 500, 6 November 26

'

&

$

%

Algorithmic rule

Because the two branches must be the same type, we need to
incorporate subsumption in an algorithmic version of this rule.
How?

Γ ` t1 : Bool Γ ` t2 : T2 Γ ` t3 : T3 T2 <: T T3 <: T

Γ ` if t1 then t2 else t3 : T

However, with this rule, we may not produce the minimal type for
the expression. We can choose any T that is greater than T2 and
T3.

We need to restrict this rule so that it produces the least such T .
This T is called the join of T2 and T3.

CIS 500, 6 November 27

'

&

$

%

Joins

Definition 6 A type J is the join of two types S and T (and is
written J = S ∨ T ) if

1. S <: J

2. T <: J

3. For all U , if S <: U and T <: U then J <: U .

A join is a generalization of a least upper bound.

CIS 500, 6 November 28



'

&

$

%

Meets

Definition 7 A type M is the meet of two types S and T (and is
written J = S ∧ T ) if

1. M <: S

2. M <: J

3. For all U , if U <: S and U <: T then U <: M .

A meet is a generalization of a greatest lower bound.

Note: do not confuse joins and meets with the intersection types
and union types that we saw on Monday.

CIS 500, 6 November 29

'

&

$

%

Existence of Joins and Meets

Given a subtype relation, it may or may not be the case that joins
and meets exist for every pair of types.

• In fact, the subtype relation does not have meets. For example,
there is no meet for the types {} and Top → Top.

Proposition 8 (Joins Exist) For every pair of types S and T ,
there is some type J such that S ∨ T = J .

Proposition 9 (Bounded Meets Exist) For every pair of types
S and T with a common subtype, there is some type M such that
S ∧ T = M .

CIS 500, 6 November 30

'

&

$

%

Algorithmic rule

Using join, we can give an algorithmic rules for if .

Γ 7→I t1 : Bool Γ 7→I t2 : T2 Γ 7→I t3 : T3 T2 ∨ T3 = T

Γ 7→I if t1 then t2 else t3 : T

CIS 500, 6 November 31

'

&

$

%

16.4 Algorithmic typing and Bottom

7→I Bot <: T (SA-Bot)

Γ 7→I t1 : T1 T1 = Bot Γ ` t2 : T2

Γ 7→I t1t2 : Bot (TA-AppBot)

Γ 7→I t1 : R R = Bot

Γ 7→I t1.li : Bot (TA-ProjBot)

In a declarative system, we can apply something of type Bot to an
argument of absolutely any type (by using subsumption to promote
the Bot to whatever function type we like), and assume that the
result has any other type.

CIS 500, 6 November 32


