
'
&

$
%

CIS 500

Software Foundations

Fall 2002

25 November

CIS 500, 25 November 1



'
&

$
%

Administrivia
� There will be class as usual on Wednesday.

CIS 500, 25 November 2



'
&

$
%

Where we are...

CIS 500, 25 November 3



'
&

$
%

The (an) essence of objects
� Multiple representations

� Encapsulation of state with behavior

� Subtyping

� Inheritance (incremental definition of behaviors)

� “Open recursion” through self

CIS 500, 25 November 4



'
&

$
%

What’s missing

The peculiar status of classes (which are both run-time and compile-time

things)

Named types with declared subtyping

Recursive types

Run-time type analysis (casting, etc.)

(Lots of other stuff — e.g., ...?)

CIS 500, 25 November 5



'
&

$
%

Modeling Java

CIS 500, 25 November 6



'
&

$
%

Quick Check

How many non-Java-hackers in the room?...

CIS 500, 25 November 7



'
&

$
%

Models in General

No such thing as a “perfect model” — The nature of a model is to

abstract away from details!

So models are never just “good”: they are always “good for some

specific purpose or set of purposes.”

CIS 500, 25 November 8



'
&

$
%

Models of Java

Lots of different purposes �! lots of different kinds of models

� Source-level vs. bytecode level

� Large (inclusive) vs. small (simple) models

� Models of type system vs. models of run-time features (not entirely

separate issues)

� Models of specific features (exceptions, concurrency, reflection, class

loading, ...)

� Models designed for extension

CIS 500, 25 November 9



'
&

$
%

Featherweight Java

Purpose: model the “core OO features” and their types and nothing else.

CIS 500, 25 November 10



'
&

$
%

Featherweight Java

Purpose: model the “core OO features” and their types and nothing else.

Things left out...

� Reflection, concurrency, class loading, inner classes, ...

CIS 500, 25 November 10-a



'
&

$
%

Featherweight Java

Purpose: model the “core OO features” and their types and nothing else.

Things left out...

� Reflection, concurrency, class loading, inner classes, ...

� Exceptions, loops, ...

CIS 500, 25 November 10-b



'
&

$
%

Featherweight Java

Purpose: model the “core OO features” and their types and nothing else.

Things left out...

� Reflection, concurrency, class loading, inner classes, ...

� Exceptions, loops, ...

� Interfaces, overloading, ...

CIS 500, 25 November 10-c



'
&

$
%

Featherweight Java

Purpose: model the “core OO features” and their types and nothing else.

Things left out...

� Reflection, concurrency, class loading, inner classes, ...

� Exceptions, loops, ...

� Interfaces, overloading, ...

� Assignment (!!)

CIS 500, 25 November 10-d



'
&

$
%

Things left in
� Classes and objects

� Methods and method invocation

� Fields and field access

� Inheritance (including open recursion through this)

� Casting

CIS 500, 25 November 11



'
&

$
%

Example
class A extends Object { A() { super(); } }

class B extends Object { B() { super(); } }

class Pair extends Object {

Object fst;

Object snd;

Pair(Object fst, Object snd) {

super(); this.fst=fst; this.snd=snd; }

Pair setfst(Object newfst) {

return new Pair(newfst, this.snd); }

}

CIS 500, 25 November 12



'
&

$
%

Conventions

For syntactic regularity...

� Always include superclass (even when it is Object)

� Always write out constructor (even when trivial)

� Always call super from constructor (even when no arguments are

passed)

� Always explicitly name receiver object in method invocation or field

access (even when it is this)

� Methods always consist of a single return expression

� Constructors always

� Take same number (and types) of parameters as fields of the class

� Assign constructor parameters to “local fields”

� Call super constructor to assign remaining fields

� Do nothing else

CIS 500, 25 November 13



'
&

$
%

Formalizing FJ

CIS 500, 25 November 14



'
&

$
%

Nominal type systems

Big dichotomy in the world of programming languages:

� Structural type systems:

� What matters about a type (for typing, subtyping, etc.) is just its

structure.

� Names are just convenient (but inessential) abbreviations.

� Nominal type systems:

� Types are always named.

� Typechecker mostly manipulates names, not structures.

� Subtyping is declared explicitly by programmer (and checked for

consistency by compiler).

CIS 500, 25 November 15



'
&

$
%

Advantages of Structural Systems

Somewhat simpler, cleaner, and more elegant (no need to always work

wrt. a set of “name definitions”)

Easier to extend (e.g. with parametric polymorphism)

Caveat: when recursive types are considered, some of this simplicity and

elegance slips away...

CIS 500, 25 November 16



'
&

$
%

Advantages of Nominal Systems

Recursive types fall out easily

Using names everywhere makes typechecking (and subtyping, etc.) easy

and efficient

Type names are also useful at run-time (for casting, type testing,

reflection, ...).

Java (like most other mainstream languages) is a nominal system.

CIS 500, 25 November 17



'
&

$
%

Representing objects

Our decision to omit assignment has a nice side effect...

The only ways in which two objects can differ are (1) their classes and

(2) the parameters passed to their constructor when they were created.

All this information is available in the new expression that creates an

object. So we can identify the created object with the new expression.

Formally: object values have the form new C(v)

CIS 500, 25 November 18



'
&

$
%

Syntax (terms and values)
t ::= terms

x variable
t.f field access

t.m(t) method invocation

new C(t) object creation

(C) t cast

v ::= values

new C(v) object creation

CIS 500, 25 November 19



'
&

$
%

Syntax (methods and classes)
K ::= constructor declarations

C(C f) {super(f); this.f=f;}

M ::= method declarations

C m(C x) {return t;}

CL ::= class declarations

class C extends C {C f; K M}

CIS 500, 25 November 20



'
&

$
%

Subtyping

As in Java, subtyping in FJ is declared.

Assume we have a (global, fixed) class table CT mapping class names to

definitions.

CT(C) = class C extends D {...}

C <: D

C <: C

C <: D D <: E

C <: E

CIS 500, 25 November 21



'
&

$
%

More auxiliary definitions

From the class table, we can read off a number of other useful

properties of the definitions (which we will need later for typechecking

and operational semantics)...

CIS 500, 25 November 22



'
&

$
%

Fields lookup

fields(Object) = ;

CT(C) = class C extends D {C f; K M}

fields(D) = D g

fields(C) = D g; C f

CIS 500, 25 November 23



'
&

$
%

Method type lookup

CT(C) = class C extends D {C f; K M}

B m (B x) {return t;} 2 M

mtype(m; C) = B!B

CT(C) = class C extends D {C f; K M}

m is not defined in M

mtype(m; C) = mtype(m; D)

CIS 500, 25 November 24



'
&

$
%

Method body lookup

CT(C) = class C extends D {C f; K M}

B m (B x) {return t;} 2 M

mbody(m; C) = (x; t)

CT(C) = class C extends D {C f; K M}

m is not defined in M

mbody(m; C) = mbody(m; D)

CIS 500, 25 November 25



'
&

$
%

Valid method overriding

mtype(m; D) = D!D0 implies C = D and C0 = D0

override(m; D; C!C0)

CIS 500, 25 November 26


