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Administrivia

� People taking the 380 final (or another) early on the 20th can start

the CIS500 exam at noon. Let me know by email if you plan to do

this.
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FJ syntax (terms and values)

t ::= terms

x variable

t.f field access

t.m(t) method invocation

new C(t) object creation

(C) t cast

v ::= values

new C(v) object creation
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Syntax (methods and classes)

K ::= constructor declarations

C(C f) {super(f); this.f=f;}

M ::= method declarations

C m(C x) {return t;}

CL ::= class declarations

class C extends C {C f; K M}
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Subtyping

Assume we have a (global, fixed) class table CT mapping class names to

definitions.

CT(C) = class C extends D {...}

C <: D

C <: C

C <: D D <: E

C <: E
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Field lookup

fields(Object) = ;

CT(C) = class C extends D {C f; K M}

fields(D) = D g

fields(C) = D g; C f
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Method type lookup

CT(C) = class C extends D {C f; K M}

B m (B x) {return t;} 2 M

mtype(m; C) = B!B

CT(C) = class C extends D {C f; K M}

m is not defined in M

mtype(m; C) = mtype(m; D)
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Method body lookup

CT(C) = class C extends D {C f; K M}

B m (B x) {return t;} 2 M

mbody(m; C) = (x; t)

CT(C) = class C extends D {C f; K M}

m is not defined in M

mbody(m; C) = mbody(m; D)
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Valid method overriding

mtype(m; D) = D!D0 implies C = D and C0 = D0

override(m; D; C!C0)
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Evaluation
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The example again

class A extends Object { A() { super(); } }

class B extends Object { B() { super(); } }

class Pair extends Object {

Object fst;

Object snd;

Pair(Object fst, Object snd) {

super(); this.fst=fst; this.snd=snd; }

Pair setfst(Object newfst) {

return new Pair(newfst, this.snd); }

}
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Evaluation

Projection:

new Pair(new A(), new B()).snd �! new B()
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Evaluation

Casting:

(Pair)new Pair(new A(), new B()) �! new Pair(new A(), new B())
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Evaluation

Method invocation:

new Pair(new A(), new B()).setfst(new B())

�!

2
4 newfst 7! new B();

this 7! new Pair(new A(),new B())
3

5

new Pair(newfst, this.snd)

i.e., new Pair(new B(), new Pair(new A(), new B()).snd)
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((Pair) (new Pair(new Pair(new A(),new B()), new A())

.fst).snd

�! ((Pair)new Pair(new A(),new B())).snd

�! new Pair(new A(), new B()).snd

�! new B()
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Evaluation rules

fields(C) = C f

(new C(v)).fi �! vi

(E-PROJNEW)

mbody(m; C) = (x; t0)

(new C(v)).m(u)

�! [x 7! u; this 7! new C(v)]t0

(E-INVKNEW)

C <: D

(D)(new C(v)) �! new C(v)

(E-CASTNEW)

plus some congruence rules...
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t0 �! t 0
0

t0.f �! t 0
0.f

(E-FIELD)

t0 �! t 0
0

t0.m(t) �! t 0
0.m(t)

(E-INVK-RECV)

ti �! t 0
i

v0.m(v, ti, t) �! v0.m(v, t 0
i, t)

(E-INVK-ARG)

ti �! t 0
i

new C(v, ti, t) �! new C(v, t 0
i, t)

(E-NEW-ARG)

t0 �! t 0
0

(C)t0 �! (C)t 0
0

(E-CAST)
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Typing
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Notes

FJ has no rule of subsumption (because we want to follow Java). The

typing rules are algorithmic.

(Where would this make a difference?...)
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Typing rules

x:C 2 �

� ` x : C

(T-VAR)
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Typing rules

� ` t0 : C0 fields(C0) = C f

� ` t0.fi : Ci

(T-FIELD)
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Typing rules

� ` t0 : D D <: C

� ` (C)t0 : C

(T-UCAST)

� ` t0 : D C <: D C 6= D

� ` (C)t0 : C

(T-DCAST)

Why two cast rules?
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Typing rules

� ` t0 : D D <: C

� ` (C)t0 : C

(T-UCAST)

� ` t0 : D C <: D C 6= D

� ` (C)t0 : C

(T-DCAST)

Why two cast rules? Because that’s how Java does it!
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Typing rules

� ` t0 : C0

mtype(m; C0) = D!C

� ` t : C C <: D

� ` t0.m(t) : C

(T-INVK)

Note that this rule “has subsumption built in” — i.e., the typing relation in

FJ is written in the algorithmic style of TAPL chapter 16, not the

declarative style of chapter 15.
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'
&

$
%

Typing rules

� ` t0 : C0

mtype(m; C0) = D!C

� ` t : C C <: D

� ` t0.m(t) : C

(T-INVK)

Note that this rule “has subsumption built in” — i.e., the typing relation in

FJ is written in the algorithmic style of TAPL chapter 16, not the

declarative style of chapter 15.

Why? Because Java does it this way!
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Typing rules

� ` t0 : C0

mtype(m; C0) = D!C

� ` t : C C <: D

� ` t0.m(t) : C

(T-INVK)

Note that this rule “has subsumption built in” — i.e., the typing relation in

FJ is written in the algorithmic style of TAPL chapter 16, not the

declarative style of chapter 15.

Why? Because Java does it this way!

But why does Java do it this way??
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Java typing is algorithmic

The Java typing relation is defined in the algorithmic style, for (at least)

two reasons:

1. In order to perform static overloading resolution, we need to be able

to speak of “the type” of an expression

2. We would otherwise run into trouble with typing of conditional

expressions

Let’s look at the second in more detail...
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Java typing must be algorithmic

We haven’t included them in FJ, but full Java has both interfaces and

conditional expressions.

The two together actually make the declarative style of typing rules

unworkable!
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Java conditionals

t1 2 bool t2 2 T2 t3 2 T3

t1 ? t2 : t3 2 ?
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Java conditionals

t1 2 bool t2 2 T2 t3 2 T3

t1 ? t2 : t3 2 ?

Actual Java rule (algorithmic):

t1 2 bool t2 2 T2 t3 2 T3

t1 ? t2 : t3 2 min(T2; T3)
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More standard (declarative) rule:

t1 2 bool t2 2 T t3 2 T

t1 ? t2 : t3 2 T
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More standard (declarative) rule:

t1 2 bool t2 2 T t3 2 T

t1 ? t2 : t3 2 T

Algorithmic version:

t1 2 bool t2 2 T2 t3 2 T3

t1 ? t2 : t3 2 T2 _ T3

Requires joins!

CIS 500, 27 November 27-a
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Java has no joins

But, in full Java (with interfaces), there are types that have no join!

E.g.:

interface I {...}

interface J {...}

interface K extends I,J {...}

interface L extends I,J {...}

K and L have no join (least upper bound) — both I and J are common

upper bounds, but neither of these is less than the other.

So: algorithmic typing rules are really our only option.
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FJ Typing rules

fields(C) = D f

� ` t : C C <: D

� ` new C(t) : C

(T-NEW)
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Typing rules (methods, classes)

x : C; this : C ` t0 : E0 E0 <: C0

CT(C) = class C extends D {...}

override(m; D; C!C0)

C0 m (C x) {return t0;} OK in C

K = C(D g, C f) {super(g); this.f = f;}

fields(D) = D g M OK in C

class C extends D {C f; K M} OK
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Properties
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Preservation

Theorem [Preservation]: If � ` t : C and t �! t 0 , then � ` t 0

: C 0 for

some C 0

<: C.

Proof: Straightforward induction.

CIS 500, 27 November 32
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Preservation

Theorem [Preservation]: If � ` t : C and t �! t 0 , then � ` t 0

: C 0 for

some C 0

<: C.

Proof: Straightforward induction. ???

CIS 500, 27 November 32-a

'
&

$
%

Preservation?
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Preservation?

Surprise: well-typed programs can step to ill-typed ones!

(How?)

CIS 500, 27 November 33-a
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Preservation?

Surprise: well-typed programs can step to ill-typed ones!

(How?)

(A)(Object)new B() �! (A)new B()
CIS 500, 27 November 33-b
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Solution: “Stupid Cast” typing rule

Add another typing rule, marked “stupid” to

� ` t0 : D C 6<: D D 6<: C

stupid warning

� ` (C)t0 : C

(T-SCAST)
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Solution: “Stupid Cast” typing rule

Add another typing rule, marked “stupid” to

� ` t0 : D C 6<: D D 6<: C

stupid warning

� ` (C)t0 : C

(T-SCAST)

This is an example of a modeling technicality; not very interesting or

deep, but we have to get it right if we’re going to claim that the model

is an accurate representation of (this fragment of) Java.
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Correspondence with Java

Let’s try to state precisely what we mean by “FJ corresponds to Java”:

Claim:

1. Every syntactically well-formed FJ program is also a syntactically

well-formed Java program.

2. A syntactically well-formed FJ program is typable in FJ (without using

the T-SCAST rule.) iff it is typable in Java.

3. A well-typed FJ program behaves the same in FJ as in Java. (E.g.,

evaluating it in FJ diverges iff compiling and running it in Java

diverges.)

Of course, without a formalization of full Java, we cannot prove this

claim. But it’s still very useful to say precisely what we are trying to

accomplish—in particular, it provides a rigorous way of judging

counterexamples.

(Cf. “conservative extension” between logics.)
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Alternative approaches to casting
� Loosen preservation theorem

� Use big-step semantics
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Progress
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Progress

Problem: well-typed programs can get stuck.

How?
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Progress

Problem: well-typed programs can get stuck.

How?

Cast failure:

(A)new Object()

CIS 500, 27 November 37-b
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Formalizing Progress

Solution: Weaken the statement of the progress theorem to

A well-typed FJ term is either a value or can reduce one step or

is stuck at a failing cast.

Formalizing this takes a little more work...
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Evaluation Contexts

E ::= evaluation contexts

[ ] hole

E.f field access

E.m(t) method invocation (receiver)

v.m(v,E,t) method invocation (arg)

new C(v,E,t) object creation (arg)

(C)E cast

Evaluation contexts capture the notion of the “next subterm to be

reduced,” in the sense that, if t �! t 0 , then we can express t and t 0 as

t = E[r] and t 0 = E[r 0] for a unique E, r, and r 0, with r �! r 0 by one of

the computation rules E-PROJNEW, E-INVKNEW, or E-CASTNEW.
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Progress

Theorem [Progress]: Suppose t is a closed, well-typed normal form.

Then either (1) t is a value, or (2) t �! t 0 for some t 0, or (3) for some

evaluation context E, we can express t as t = E[(C)(new D(v))], with

D 6<: C.
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