
'
&

$
%

CIS 500

Software Foundations

Fall 2002

27 November

CIS 500, 27 November 1

'
&

$
%

Administrivia

� People taking the 380 final (or another) early on the 20th can start

the CIS500 exam at noon. Let me know by email if you plan to do

this.

CIS 500, 27 November 2

'
&

$
%

FJ syntax (terms and values)

t ::= terms

x variable

t.f field access

t.m(t) method invocation

new C(t) object creation

(C) t cast

v ::= values

new C(v) object creation

CIS 500, 27 November 3

'
&

$
%

Syntax (methods and classes)

K ::= constructor declarations

C(C f) {super(f); this.f=f;}

M ::= method declarations

C m(C x) {return t;}

CL ::= class declarations

class C extends C {C f; K M}

CIS 500, 27 November 4

'
&

$
%

Subtyping

Assume we have a (global, fixed) class table CT mapping class names to

definitions.

CT(C) = class C extends D {...}

C <: D

C <: C

C <: D D <: E

C <: E

CIS 500, 27 November 5

'
&

$
%

Field lookup

fields(Object) = ;

CT(C) = class C extends D {C f; K M}

fields(D) = D g

fields(C) = D g; C f

CIS 500, 27 November 6

'
&

$
%

Method type lookup

CT(C) = class C extends D {C f; K M}

B m (B x) {return t;} 2 M

mtype(m; C) = B!B

CT(C) = class C extends D {C f; K M}

m is not defined in M

mtype(m; C) = mtype(m; D)

CIS 500, 27 November 7

'
&

$
%

Method body lookup

CT(C) = class C extends D {C f; K M}

B m (B x) {return t;} 2 M

mbody(m; C) = (x; t)

CT(C) = class C extends D {C f; K M}

m is not defined in M

mbody(m; C) = mbody(m; D)

CIS 500, 27 November 8

'
&

$
%

Valid method overriding

mtype(m; D) = D!D0 implies C = D and C0 = D0

override(m; D; C!C0)

CIS 500, 27 November 9

'
&

$
%

Evaluation

CIS 500, 27 November 10

'
&

$
%

The example again

class A extends Object { A() { super(); } }

class B extends Object { B() { super(); } }

class Pair extends Object {

Object fst;

Object snd;

Pair(Object fst, Object snd) {

super(); this.fst=fst; this.snd=snd; }

Pair setfst(Object newfst) {

return new Pair(newfst, this.snd); }

}

CIS 500, 27 November 11

'
&

$
%

Evaluation

Projection:

new Pair(new A(), new B()).snd �! new B()

CIS 500, 27 November 12

'
&

$
%

Evaluation

Casting:

(Pair)new Pair(new A(), new B()) �! new Pair(new A(), new B())

CIS 500, 27 November 13

'
&

$
%

Evaluation

Method invocation:

new Pair(new A(), new B()).setfst(new B())

�!

2
4 newfst 7! new B();

this 7! new Pair(new A(),new B())
3

5

new Pair(newfst, this.snd)

i.e., new Pair(new B(), new Pair(new A(), new B()).snd)

CIS 500, 27 November 14

'
&

$
%

((Pair) (new Pair(new Pair(new A(),new B()), new A())

.fst).snd

�! ((Pair)new Pair(new A(),new B())).snd

�! new Pair(new A(), new B()).snd

�! new B()

CIS 500, 27 November 15

'
&

$
%

Evaluation rules

fields(C) = C f

(new C(v)).fi �! vi

(E-PROJNEW)

mbody(m; C) = (x; t0)

(new C(v)).m(u)

�! [x 7! u; this 7! new C(v)]t0

(E-INVKNEW)

C <: D

(D)(new C(v)) �! new C(v)

(E-CASTNEW)

plus some congruence rules...

CIS 500, 27 November 16

'
&

$
%

t0 �! t 0
0

t0.f �! t 0
0.f

(E-FIELD)

t0 �! t 0
0

t0.m(t) �! t 0
0.m(t)

(E-INVK-RECV)

ti �! t 0
i

v0.m(v, ti, t) �! v0.m(v, t 0
i, t)

(E-INVK-ARG)

ti �! t 0
i

new C(v, ti, t) �! new C(v, t 0
i, t)

(E-NEW-ARG)

t0 �! t 0
0

(C)t0 �! (C)t 0
0

(E-CAST)

CIS 500, 27 November 17

'
&

$
%

Typing

CIS 500, 27 November 18

'
&

$
%

Notes

FJ has no rule of subsumption (because we want to follow Java). The

typing rules are algorithmic.

(Where would this make a difference?...)

CIS 500, 27 November 19

'
&

$
%

Typing rules

x:C 2 �

� ` x : C

(T-VAR)

CIS 500, 27 November 20

'
&

$
%

Typing rules

� ` t0 : C0 fields(C0) = C f

� ` t0.fi : Ci

(T-FIELD)

CIS 500, 27 November 21

'
&

$
%

Typing rules

� ` t0 : D D <: C

� ` (C)t0 : C

(T-UCAST)

� ` t0 : D C <: D C 6= D

� ` (C)t0 : C

(T-DCAST)

Why two cast rules?

CIS 500, 27 November 22

'
&

$
%

Typing rules

� ` t0 : D D <: C

� ` (C)t0 : C

(T-UCAST)

� ` t0 : D C <: D C 6= D

� ` (C)t0 : C

(T-DCAST)

Why two cast rules? Because that’s how Java does it!

CIS 500, 27 November 22-a

'
&

$
%

Typing rules

� ` t0 : C0

mtype(m; C0) = D!C

� ` t : C C <: D

� ` t0.m(t) : C

(T-INVK)

Note that this rule “has subsumption built in” — i.e., the typing relation in

FJ is written in the algorithmic style of TAPL chapter 16, not the

declarative style of chapter 15.

CIS 500, 27 November 23

'
&

$
%

Typing rules

� ` t0 : C0

mtype(m; C0) = D!C

� ` t : C C <: D

� ` t0.m(t) : C

(T-INVK)

Note that this rule “has subsumption built in” — i.e., the typing relation in

FJ is written in the algorithmic style of TAPL chapter 16, not the

declarative style of chapter 15.

Why? Because Java does it this way!

CIS 500, 27 November 23-a

'
&

$
%

Typing rules

� ` t0 : C0

mtype(m; C0) = D!C

� ` t : C C <: D

� ` t0.m(t) : C

(T-INVK)

Note that this rule “has subsumption built in” — i.e., the typing relation in

FJ is written in the algorithmic style of TAPL chapter 16, not the

declarative style of chapter 15.

Why? Because Java does it this way!

But why does Java do it this way??

CIS 500, 27 November 23-b

'
&

$
%

Java typing is algorithmic

The Java typing relation is defined in the algorithmic style, for (at least)

two reasons:

1. In order to perform static overloading resolution, we need to be able

to speak of “the type” of an expression

2. We would otherwise run into trouble with typing of conditional

expressions

Let’s look at the second in more detail...

CIS 500, 27 November 24

'
&

$
%

Java typing must be algorithmic

We haven’t included them in FJ, but full Java has both interfaces and

conditional expressions.

The two together actually make the declarative style of typing rules

unworkable!

CIS 500, 27 November 25

'
&

$
%

Java conditionals

t1 2 bool t2 2 T2 t3 2 T3

t1 ? t2 : t3 2 ?

CIS 500, 27 November 26

'
&

$
%

Java conditionals

t1 2 bool t2 2 T2 t3 2 T3

t1 ? t2 : t3 2 ?

Actual Java rule (algorithmic):

t1 2 bool t2 2 T2 t3 2 T3

t1 ? t2 : t3 2 min(T2; T3)

CIS 500, 27 November 26-a

'
&

$
%
More standard (declarative) rule:

t1 2 bool t2 2 T t3 2 T

t1 ? t2 : t3 2 T

CIS 500, 27 November 27

'
&

$
%

More standard (declarative) rule:

t1 2 bool t2 2 T t3 2 T

t1 ? t2 : t3 2 T

Algorithmic version:

t1 2 bool t2 2 T2 t3 2 T3

t1 ? t2 : t3 2 T2 _ T3

Requires joins!

CIS 500, 27 November 27-a

'
&

$
%

Java has no joins

But, in full Java (with interfaces), there are types that have no join!

E.g.:

interface I {...}

interface J {...}

interface K extends I,J {...}

interface L extends I,J {...}

K and L have no join (least upper bound) — both I and J are common

upper bounds, but neither of these is less than the other.

So: algorithmic typing rules are really our only option.

CIS 500, 27 November 28

'
&

$
%

FJ Typing rules

fields(C) = D f

� ` t : C C <: D

� ` new C(t) : C

(T-NEW)

CIS 500, 27 November 29

'
&

$
%

Typing rules (methods, classes)

x : C; this : C ` t0 : E0 E0 <: C0

CT(C) = class C extends D {...}

override(m; D; C!C0)

C0 m (C x) {return t0;} OK in C

K = C(D g, C f) {super(g); this.f = f;}

fields(D) = D g M OK in C

class C extends D {C f; K M} OK

CIS 500, 27 November 30

'
&

$
%

Properties

CIS 500, 27 November 31

'
&

$
%

Preservation

Theorem [Preservation]: If � ` t : C and t �! t 0 , then � ` t 0

: C 0 for

some C 0

<: C.

Proof: Straightforward induction.

CIS 500, 27 November 32

'
&

$
%

Preservation

Theorem [Preservation]: If � ` t : C and t �! t 0 , then � ` t 0

: C 0 for

some C 0

<: C.

Proof: Straightforward induction. ???

CIS 500, 27 November 32-a

'
&

$
%

Preservation?

CIS 500, 27 November 33

'
&

$
%

Preservation?

Surprise: well-typed programs can step to ill-typed ones!

(How?)

CIS 500, 27 November 33-a

'
&

$
%

Preservation?

Surprise: well-typed programs can step to ill-typed ones!

(How?)

(A)(Object)new B() �! (A)new B()
CIS 500, 27 November 33-b

'
&

$
%

Solution: “Stupid Cast” typing rule

Add another typing rule, marked “stupid” to

� ` t0 : D C 6<: D D 6<: C

stupid warning

� ` (C)t0 : C

(T-SCAST)

CIS 500, 27 November 34

'
&

$
%

Solution: “Stupid Cast” typing rule

Add another typing rule, marked “stupid” to

� ` t0 : D C 6<: D D 6<: C

stupid warning

� ` (C)t0 : C

(T-SCAST)

This is an example of a modeling technicality; not very interesting or

deep, but we have to get it right if we’re going to claim that the model

is an accurate representation of (this fragment of) Java.

CIS 500, 27 November 34-a

'
&

$
%

Correspondence with Java

Let’s try to state precisely what we mean by “FJ corresponds to Java”:

Claim:

1. Every syntactically well-formed FJ program is also a syntactically

well-formed Java program.

2. A syntactically well-formed FJ program is typable in FJ (without using

the T-SCAST rule.) iff it is typable in Java.

3. A well-typed FJ program behaves the same in FJ as in Java. (E.g.,

evaluating it in FJ diverges iff compiling and running it in Java

diverges.)

Of course, without a formalization of full Java, we cannot prove this

claim. But it’s still very useful to say precisely what we are trying to

accomplish—in particular, it provides a rigorous way of judging

counterexamples.

(Cf. “conservative extension” between logics.)

CIS 500, 27 November 35

'
&

$
%

Alternative approaches to casting
� Loosen preservation theorem

� Use big-step semantics

CIS 500, 27 November 36

'
&

$
%

Progress

CIS 500, 27 November 37

'
&

$
%

Progress

Problem: well-typed programs can get stuck.

How?

CIS 500, 27 November 37-a

'
&

$
%

Progress

Problem: well-typed programs can get stuck.

How?

Cast failure:

(A)new Object()

CIS 500, 27 November 37-b

'
&

$
%

Formalizing Progress

Solution: Weaken the statement of the progress theorem to

A well-typed FJ term is either a value or can reduce one step or

is stuck at a failing cast.

Formalizing this takes a little more work...

CIS 500, 27 November 38

'
&

$
%

Evaluation Contexts

E ::= evaluation contexts

[] hole

E.f field access

E.m(t) method invocation (receiver)

v.m(v,E,t) method invocation (arg)

new C(v,E,t) object creation (arg)

(C)E cast

Evaluation contexts capture the notion of the “next subterm to be

reduced,” in the sense that, if t �! t 0 , then we can express t and t 0 as

t = E[r] and t 0 = E[r 0] for a unique E, r, and r 0, with r �! r 0 by one of

the computation rules E-PROJNEW, E-INVKNEW, or E-CASTNEW.

CIS 500, 27 November 39

'
&

$
%

Progress

Theorem [Progress]: Suppose t is a closed, well-typed normal form.

Then either (1) t is a value, or (2) t �! t 0 for some t 0, or (3) for some

evaluation context E, we can express t as t = E[(C)(new D(v))], with

D 6<: C.

CIS 500, 27 November 40

