
'
&

$
%

CIS 500

Software Foundations

Fall 2002

2 December

CIS 500, 2 December 1



'
&

$
%

Administrivia
� Final HW assignment (#13) is now available; due next Monday

� Recitations

� Recitations as usual this week

� No recitations after this week (extra office hours instead)

� Class

� Today: recap and discussion

� Wednesday: one more object model (optional lecture)

� Next Monday: review session (come with questions)

� Exam: Dec 20, 11–1

� Location: Steinberg-Dietrich Hall (3620 Locust Walk), Room 350

� Coverage: Chapters 1 to 19 of TAPL, excluding 12 and 15.6, plus

reading knowledge of basic OCaml

CIS 500, 2 December 2



'
&

$
%

Recap... Where we’ve been

CIS 500, 2 December 3



'
&

$
%

What is “software foundations”?

Software foundations (a.k.a. “theory of programming languages”) is the

study of the meaning of programs.

A main goal is finding ways to describe program behaviors that are both

precise and abstract.

CIS 500, 2 December 4



'
&

$
%

Why study software foundations?
� To be able to prove specific facts about particular programs (i.e.,

program verification)

Important in some domains (safety-critical systems, hardware design,

inner loops of key algorithms, ...), but (inherently?) difficult and

expensive. We have not said much about this in the course.

� To develop intuitions for informal reasoning about programs

� To prove general facts about all the programs in a given

programming language (e.g., safety or security properties)

� To understand language features (and their interactions) deeply and

develop principles for better language design

PL as the ”materials science” of computer science...

CIS 500, 2 December 5



'
&

$
%

What I hope you got out of the course
� A more sophisticated perspective on programs, programming

languages, and the activity of programming

� How to view programs and whole languages as formal,

mathematical objects

� How to make and prove rigorous claims about them

� Detailed study of a range of basic language features

� Deep intuitions about key language properties such as type safety

� Powerful tools for language design, description, and analysis

N.b.: most software designers are language designers!

CIS 500, 2 December 6



'
&

$
%

Overview

In this course, we concentrated on operational semantics and type

systems.

� Part O: Background

� A taste of OCaml

� Functional programming style

� Part I: Basics

� Inductive definitions and proofs

� Operational semantics

� The lambda-calculus

� Evaluator implementation in OCaml

CIS 500, 2 December 7



'
&

$
%

� Part II: Type systems

� Simple types
� Type safety — preservation and progress

� Formal description of a variety of basic language features

(records, variants, lists, casting, ...)

� References

� Exceptions

� Subtyping

� Metatheory of subtyping (subtyping and typechecking algorithms)

� Part III: Object-oriented features (case studies)

� A simple imperative object model

� An direct formalization of core Java

CIS 500, 2 December 8



'
&

$
%

What next?

CIS 500, 2 December 9



'
&

$
%

The Research Literature

With this course under your belt, you should be ready to directly address

research papers in programming languages.

This is a big area, and each sub-area has its own special techniques and

notations, but you now have the basic intuitions needed to grapple with

these on your own.

CIS 500, 2 December 10



'
&

$
%

The rest of TAPL

Several more “core topics” are covered in the second half of TAPL.

� Recursive types (including a rigorous treatment of induction and

co-induction)

� Parametric polymorphism (universal and existential types)

� Bounded quantification

� Refinement of the imperative object model

� ML-style type inference

� Type operators

� Higher-order bounded quantification

� A purely functional object model

CIS 500, 2 December 11


