
'
&

$
%

CIS 500

Software Foundations

Fall 2002

4 December

CIS 500, 4 December 1

'
&

$
%

Announcement

Simon Peyton Jones (Microsoft Research) will be giving a joint CIS /

Wharton distinguished lecture tomorrow:

Composing contracts: an adventure in financial engineering

Thursday, December 5th, 2002

Huntsman Hall, Room G60

3:00 p.m. - 4:30 p.m.

Highly recommended!!

CIS 500, 4 December 2

'
&

$
%

Universal Types

CIS 500, 4 December 3

'
&

$
%

Motivation

In the simply typed lambda-calculus, we often have to write several

versions of the same code, differing only in type annotations.

doubleNat = �f:Nat!Nat. �x:Nat. f (f x)

doubleRcd = �f:{l:Bool}!{l:Bool}. �x:{l:Bool}. f (f x)

doubleFun = �f:(Nat!Nat)!(Nat!Nat). �x:Nat!Nat. f (f x)

This violates a basic principle of software engineering:

Write each piece of functionality once

CIS 500, 4 December 4



'
&

$
%

Motivation

In the simply typed lambda-calculus, we often have to write several

versions of the same code, differing only in type annotations.

doubleNat = �f:Nat!Nat. �x:Nat. f (f x)

doubleRcd = �f:{l:Bool}!{l:Bool}. �x:{l:Bool}. f (f x)

doubleFun = �f:(Nat!Nat)!(Nat!Nat). �x:Nat!Nat. f (f x)

This violates a basic principle of software engineering:

Write each piece of functionality once... and parameterize it on

the details that vary from one instance to another.

Here, the details that vary are the types!

CIS 500, 4 December 4-a

'
&

$
%

Idea

So we’d like to be able to take a piece of code and “abstract out” some

type annotations.

We’ve already got a mechanism for doing this with terms: �-abstraction.

So let’s just re-use the notation for abstracting out types.

Abstraction:

double = �X. �f:X!X. �x:X. f (f x)

Application:

double [Nat]

double [Bool]

Computation:

double [Nat] �! �f:Nat!Nat. �x:Nat. f (f x)

(N.b.: Type application is usually written t [T], though t T would be more

consistent.)

CIS 500, 4 December 5

'
&

$
%

Idea

What is the type of a term like

�X. �f:X!X. �x:X. f (f x) ?

This term is a function that, when applied to a type X, yields a term of

type (X!X)!X!X.

CIS 500, 4 December 6

'
&

$
%

Idea

What is the type of a term like

�X. �f:X!X. �x:X. f (f x) ?

This term is a function that, when applied to a type X, yields a term of

type (X!X)!X!X.

I.e., for all types X, it yields a result of type (X!X)!X!X.

CIS 500, 4 December 6-a



'
&

$
%

Idea

What is the type of a term like
�X. �f:X!X. �x:X. f (f x) ?

This term is a function that, when applied to a type X, yields a term of

type (X!X)!X!X.

I.e., for all types X, it yields a result of type (X!X)!X!X.

We’ll write it like this: 8X. (X!X)!X!X

CIS 500, 4 December 6-b

'
&

$
%

System F

System F (aka “the polymorphic lambda-calculus”) formalizes this idea by

extending the simply typed lambda-calculus with type abstraction and

type application.

t ::= terms

x variable

�x:T.t abstraction

t t application

�X.t type abstraction

t [T] type application

CIS 500, 4 December 7

'
&

$
%

System F

System F (aka “the polymorphic lambda-calculus”) formalizes this idea by

extending the simply typed lambda-calculus with type abstraction and

type application.

t ::= terms

x variable

�x:T.t abstraction

t t application

�X.t type abstraction

t [T] type application

v ::= values

�x:T.t abstraction value

�X.t type abstraction value

CIS 500, 4 December 7-a

'
&

$
%

System F: new evaluation rules

t1 �! t 0
1

t1 [T2] �! t 0
1 [T2]

(E-TAPP)

(�X.t12) [T2] �! [X 7! T2]t12 (E-TAPPTABS)

CIS 500, 4 December 8



'
&

$
%

System F: Types

To talk about the types of “terms abstracted on types,” we need to

introduce a new form of types:

T ::= types

X type variable

T!T type of functions

8X.T universal type

CIS 500, 4 December 9

'
&

$
%

System F: Typing Rules

x:T 2 �

� ` x : T

(T-VAR)

�; x:T1 ` t2 : T2

� ` �x:T1.t2 : T1!T2

(T-ABS)

� ` t1 : T11!T12 � ` t2 : T11

� ` t1 t2 : T12

(T-APP)

�; X ` t2 : T2

� ` �X.t2 : 8X.T2

(T-TABS)

� ` t1 : 8X.T12

� ` t1 [T2] : [X 7! T2]T12

(T-TAPP)

CIS 500, 4 December 10

'
&

$
%

Examples

[on board]

CIS 500, 4 December 11

'
&

$
%

Properties of System F

Preservation and Progress. (Proofs similar to what we’ve seen.)

Strong normalization: every well-typed program halts. (Proof is

challenging!)

Type reconstruction: undecidable (major open problem from 1972 until

1994, when Joe Wells solved it)

CIS 500, 4 December 12



'
&

$
%

Parametricity

Observation:

The type 8X. X!X!X has exactly two members (up to

observational equivalence).

8X. X!X has one.

etc.

The concept of parametricity gives rise to some useful “free theorems...”

CIS 500, 4 December 13

'
&

$
%

History

Interestingly, System F was invented independently and almost

simultaneously by a computer scientist (John Reynolds) and a logician

(Jean-Yves Girard).

Their results look very different at first sight — one is presented as a

tiny programming language, the other as a variety of second-order logic.

The similarity (indeed, isomorphism!) between them is an example of the

Curry-Howard Correspondence.

CIS 500, 4 December 14

'
&

$
%

Existential Types

CIS 500, 4 December 15

'
&

$
%

Motivation

If universal quantifiers are useful in programming, then what about

existential quantifiers?

CIS 500, 4 December 16



'
&

$
%

Motivation

If universal quantifiers are useful in programming, then what about

existential quantifiers?

Rough intuition:

Terms with universal types are functions from types to terms.

Terms with existential types are pairs of a type and a term.

CIS 500, 4 December 16-a

'
&

$
%

Concrete Intuition

Existential types describe simple modules:

An existentially typed value is introduced by pairing a type with a

term, written {*S,t}. (The star avoids syntactic confusion with

ordinary pairs.)

A value {*S,t} of type {9X,T} is a module with one (hidden) type

component and one term component.

Example: p = {*Nat, {a=5, f=�x:Nat. succ(x)}}

has type {9X, {a:X, f:X!X}}

The type component of p is Nat, and the value component is a record

containing a field a of type X and a field f of type X!X, for some X

(namely Nat).

CIS 500, 4 December 17

'
&

$
%
The same package p = {*Nat, {a=5, f=�x:Nat. succ(x)}}

also has type {9X, {a:X, f:X!Nat}} ,

since its right-hand component is a record with fields a and f of type X

and X!Nat, for some X (namely Nat).

CIS 500, 4 December 18

'
&

$
%

The same package p = {*Nat, {a=5, f=�x:Nat. succ(x)}}

also has type {9X, {a:X, f:X!Nat}} ,

since its right-hand component is a record with fields a and f of type X

and X!Nat, for some X (namely Nat).

This example shows that there is no automatic (“best”) way to guess the

type of an existential package. The programmer has to say what is

intended.

We re-use the “ascription” notation for this:
p = {*Nat, {a=5, f=�x:Nat. succ(x)}} as {9X, {a:X, f:X!X}}

p1 = {*Nat, {a=5, f=�x:Nat. succ(x)}} as {9X, {a:X, f:X!Nat}}

CIS 500, 4 December 18-a



'
&

$
%

The same package p = {*Nat, {a=5, f=�x:Nat. succ(x)}}

also has type {9X, {a:X, f:X!Nat}} ,

since its right-hand component is a record with fields a and f of type X

and X!Nat, for some X (namely Nat).

This example shows that there is no automatic (“best”) way to guess the

type of an existential package. The programmer has to say what is

intended.

We re-use the “ascription” notation for this:

p = {*Nat, {a=5, f=�x:Nat. succ(x)}} as {9X, {a:X, f:X!X}}

p1 = {*Nat, {a=5, f=�x:Nat. succ(x)}} as {9X, {a:X, f:X!Nat}}

This gives us the “introduction rule” for existentials:

� ` t2 : [X 7! U]T2

� ` {*U,t2} as {9X,T2} : {9X,T2}

(T-PACK)

CIS 500, 4 December 18-b

'
&

$
%

Different representations...

Note that this rule permits packages with different hidden types to

inhabit the same existential type.

Example:

p2 = {*Nat, 0} as {9X,X}

p3 = {*Bool, true} as {9X,X}

CIS 500, 4 December 19

'
&

$
%

Different representations...

Note that this rule permits packages with different hidden types to

inhabit the same existential type.

Example:

p2 = {*Nat, 0} as {9X,X}

p3 = {*Bool, true} as {9X,X}

More useful example:

p4 = {*Nat, {a=0, f=�x:Nat. succ(x)}} as {9X, {a:X, f:X!Nat}}

p5 = {*Bool, {a=true, f=�x:Bool. 0}} as {9X, {a:X, f:X!Nat}}

CIS 500, 4 December 19-a

'
&

$
%

Exercise...

Here are three more variations on the same theme:

p6 = {*Nat, {a=0, f=�x:Nat. succ(x)}} as {9X, {a:X, f:X!X}}

p7 = {*Nat, {a=0, f=�x:Nat. succ(x)}} as {9X, {a:X, f:Nat!X}}

p8 = {*Nat, {a=0, f=�x:Nat. succ(x)}} as {9X, {a:Nat, f:Nat!Nat}}

In what ways are these less useful than p4 and p5?

p4 = {*Nat, {a=0, f=�x:Nat. succ(x)}} as {9X, {a:X, f:X!Nat}}

p5 = {*Bool, {a=true, f=�x:Bool. 0}} as {9X, {a:X, f:X!Nat}}

CIS 500, 4 December 20



'
&

$
%

The elimination form for existentials

Intuition: If an existential package is like a module, then eliminating (using)

such a package should correspond to “open” or “import.”

I.e., we should be able to use the components of the module, but the

identity of the type component should be “held abstract.”
� ` t1 : {9X,T12} �; X; x:T12 ` t2 : T2

� ` let {X,x}=t1 in t2 : T2

(T-UNPACK)

Example:

if

p4 = {*Nat, {a=0, f=�x:Nat. succ(x)}} as {9X,{a:X,f:X!Nat}}

then

let {X,x} = p4 in (x.f x.a) has type Nat (and evaluates to 1).

CIS 500, 4 December 21

'
&

$
%

Abstraction

However, if we try to use the a component of p4 as a number,

typechecking fails:

p4 = {*Nat, {a=0, f=�x:Nat. succ(x)}} as {9X,{a:X,f:X!Nat}}

let {X,x} = p4 in (succ x.a)

Error: argument of succ is not a number

This failure makes good sense, since we saw that another package with

the same existential type as p4 might use Bool or anything else as its

representation type.

� ` t1 : {9X,T12} �; X; x:T12 ` t2 : T2

� ` let {X,x}=t1 in t2 : T2

(T-UNPACK)

CIS 500, 4 December 22

'
&

$
%

Computation

The computation rule for existentials is also straightforward:

let {X,x}=({*T11,v12} as T1) in t2

�! [X 7! T11][x 7! v12]t2

(E-UNPACKPACK)

CIS 500, 4 December 23

'
&

$
%

Example: Abstract Data Types

counterADT =

{*Nat,

{new = 1,

get = �i:Nat. i,

inc = �i:Nat. succ(i)}}

as {9Counter,

{new: Counter,

get: Counter!Nat,

inc: Counter!Counter}};

let {Counter,counter} = counterADT in

counter.get (counter.inc counter.new);

CIS 500, 4 December 24



'
&

$
%

Representation independence

We can substitute another implementation of counters without affecting

the code that uses counters:

counterADT =

{*{x:Nat},

{new = {x=1},

get = �i:{x:Nat}. i.x,

inc = �i:{x:Nat}. {x=succ(i.x)}}}

as {9Counter,

{new: Counter, get: Counter!Nat, inc: Counter!Counter}};

CIS 500, 4 December 25

'
&

$
%

Cascaded ADTs

We can use the counter ADT to define new ADTs that use counters in

their internal representations:

let {Counter,counter} = counterADT in

let {FlipFlop,flipflop} =

{*Counter,

{new = counter.new,

read = �c:Counter. iseven (counter.get c),

toggle = �c:Counter. counter.inc c,

reset = �c:Counter. counter.new}}

as {9FlipFlop,

{new: FlipFlop, read: FlipFlop!Bool,

toggle: FlipFlop!FlipFlop, reset: FlipFlop!FlipFlop}} in

flipflop.read (flipflop.toggle (flipflop.toggle flipflop.new));

CIS 500, 4 December 26

'
&

$
%

Existential Objects

Counter = {9X, {state:X, methods: {get:X!Nat, inc:X!X}}};

c = {*Nat,

{state = 5,

methods = {get = �x:Nat. x,

inc = �x:Nat. succ(x)}}}

as Counter;

let {X,body} = c in body.methods.get(body.state);

CIS 500, 4 December 27

'
&

$
%

Existential objects: invoking methods

More generally, we can define a little function that “sends the get

message” to any counter:

sendget = �c:Counter.

let {X,body} = c in

body.methods.get(body.state);

CIS 500, 4 December 28



'
&

$
%

Invoking the inc method of a counter object is a little more complicated.

If we simply do the same as for get, the typechecker complains
let {X,body} = c in body.methods.inc(body.state);

Error: Scoping error!

because the type variable X appears free in the type of the body of the

let.

Indeed, what we’ve written doesn’t make intuitive sense either, since the

result of the inc method is a bare internal state, not an object.

CIS 500, 4 December 29

'
&

$
%

To satisfy both the typechecker and our informal understanding of what

invoking inc should do, we must take this fresh internal state and

repackage it as a counter object, using the same record of methods and

the same internal state type as in the original object:

c1 = let {X,body} = c in

{*X,
{state = body.methods.inc(body.state),

methods = body.methods}}

as Counter;

More generally, to “send the inc message” to a counter, we can write:

sendinc = �c:Counter.

let {X,body} = c in

{*X,
{state = body.methods.inc(body.state),

methods = body.methods}}

as Counter;

CIS 500, 4 December 30

'
&

$
%

Objects vs. ADTs

The examples of ADTs and objects that we have seen in the past few

slides offer a revealing way to think about the differences between

“classical ADTs” and objects.

� Both can be represented using existentials

� With ADTs, each existential package is opened as early as possible (at

creation time)

� With objects, the existential package is opened as late as possible (at

method invocation time)

These differences in style give rise to the well-known pragmatic

differences between ADTs and objects:

� ADTs support binary operations

� objects support multiple representations

CIS 500, 4 December 31

'
&

$
%

A full-blown existential object model

What we’ve done so far is to give an account of “object-style”

encapsulation in terms of existential types.

To give a full model of all the “core OO features” we have discussed

before, some significant work is required. In particular, we must add:

� subtyping (and “bounded quantification”)

� type operators (“higher-order subtyping”)

CIS 500, 4 December 32


