
CIS 500 — Software Foundations

Midterm I

Answer key
October 14, 2002

Name:

Student ID:

(from your PennCard)

Email

Status registered for the course

not registered — just taking the exam for practice

Program undergrad

undergrad (MSE submatriculant)

CIS MSE

CIS MCIT

CIS PhD

other



Instructions

• This is a closed-book exam: you may not make use of any books or notes.

• You have 80 minutes to answer all of the questions. The entire exam is worth 80 points.

• Questions vary significantly in difficulty, and the point value of a given question is not always exactly
proportional to its difficulty. Do not spend too much time on any one question.

• Partial credit will be given. All correct answers are short. The back side of each page may be used as a
scratch pad.

• Good luck!

1



Untyped lambda-calculus

1. (2 points) We have seen that a linear expression like λx. λy. x y x is shorthand for an abstract syntax
tree that can be drawn like this:

λx

λy

apply

rr
rr

FF
FF

apply

ww
ww

MM
MM

M
x

x y

Draw the abstract syntax trees corresponding to the following expressions:

(a) a b c

Answer:
apply

rr
rr

FF
FF

apply

xx
xx

LL
LL

LL
c

a b

(b) (λx. b) (c d)

Answer:
apply

vv
vv LL

LL

λx apply

rr
rr
rr

FF
FF

b c d

Grading scheme: 1 point for each part. No partial credit awarded.

2. (10 points) Write down the normal forms of the following λ-terms:

(a) (λt. λf. t) (λt. λf. f) (λx. x)

Answer: λt. λf. f

(b) (λx. x) (λx. x) (λx. x) (λx. x)
Answer: λx. x

(c) λx. x (λx. x) (λx. x)
Answer: λx. x (λx. x) (λx. x)

(d) (λx. x (λx. x)) (λx. x (λx. x x))

Answer: λx. x x

(e) (λx. x x x) (λx. x x x)

Answer: No normal form

Grading scheme: Binary. 2 points each.

2



3. (4 points) Recall the following abbreviations from Chapter 5:

tru = λt. λf. t
fls = λt. λf. f
not = λb. b fls tru

Complete this definition of a lambda term that takes two church booleans, b and c, and returns the
logical “exclusive or” of b and c.

xor = λb. λc. ___________________________________________

Some possible answers:

xor = λb. λc. b (not c) c
xor = λb. λc. b (c fls tru) c

Grading scheme: Points awarded roughly proportional to the number of correct lines in the XOR truth
table.

4. (8 points) A list can be represented in the lambda-calculus by its fold function. (OCaml’s name for this
function is fold_right; it is also sometimes called reduce.) For example, the list [x,y,z] becomes a
function that takes two arguments c and n and returns c x (c y (c z n))). The definitions of nil and
cons for this representation of lists are as follows:

nil = λc. λn. n;
cons = λh. λt. λc. λn. c h (t c n);

Suppose we now want to define a λ-term append that, when applied to two lists l1 and l2, will append
l1 to l2 — i.e., it will return a λ-term representing a list containing all the elements of l1 and then
those of l2. Complete the following definition of append.

append = λl1. λl2. λc. λn. ________________________________________________________

Answer:

append = λl1. λl2. λc. λn. l1 c (l2 c n)

Grading scheme: Incorrect recursive definitions of append were awarded partial credit. Points deducted
for each incorrect user of cons and nil.

3



5. (6 points) Recall the call-by-value fixed-point combinator from Chapter 5:

fix = λf. (λx. f (λy. x x y)) (λx. f (λy. x x y));

We can use fix to write a function sumupto that, given a Church numerals m, calculates the sum of all
the numbers less than or equal to m, as follows.

g = λf. λm.
(iszro m)

(λx. c0)
(λx. plus _________ (_________ (prd m)))

tru;
sumupto = fix g;

Fill in the two omitted subterms.
Answer:

g = λf. λm.
(iszro m)

(λx. c0)
(λx. plus m (f (prd m)))

tru;

Grading scheme: First blank is worth 2 points, second blank is worth 4 points (roughly).

4



Nameless representation of terms

6. (4 points) Suppose we have defined the naming context Γ = a,b,c,d. What are the deBruijn represen-
tations of the following λ-terms?

(a) λx. λy. x y d

Answer: λ. λ. 1 0 2

(b) λx. c (λy. (c y) x) d

Answer: λ. 2 (λ. (3 0) 1) 1

Grading scheme: One point deducted for each incorrect character/set of parens.

7. (4 points) Write down (in deBruijn notation) the terms that result from the following substitutions.

(a) [0, λ.0]((λ. 0 1) 1)

Answer: (λ. 0 (λ.0)) 1

(b) [0, λ. 0 1]((λ. 0 1) 0)

Answer: (λ. 0 (λ. 0 2)) (λ. 0 1)

Grading scheme: One point deducted for each incorrect character/set of parens.

5



Typed arithmetic expressions

The full definition of the language of typed arithmetic and boolean expressions is reproduced, for
your reference, on page 11.

8. (9 points) Suppose we add the following new rule to the evaluation relation:

succ true -→ pred (succ true)

Which of the following properties will remain true in the presence of this rule? For each one, write
either “remains true” or else “becomes false,” plus (in either case) a one-sentence justification of your
answer.

(a) Termination of evaluation (for every term t there is some normal form t′ such that t -→∗ t′)
Answer: Becomes false. For example, the term succ true has no normal form.

(b) Progress (if t is well typed, then either t is a value or else t -→ t′ for some t′)
Answer: Remains true. Adding a new evaluation rule can only make it easier for the progress
property to hold.

(c) Preservation (if t has type T and t -→ t′, then t′ also has type T)

Answer: Remains true: succ true is not well typed (nor is any term containing it), so it doesn’t
matter what it evaluates to.

Grading scheme: -3 for each wrong answer. One point awarded for correct answer. One point awarded
for partial explanation (given generously). One point awarded for complete explanation (given spar-
ingly).

9. (9 points) Suppose, instead, that we add this new rule to the evaluation relation:

t -→ if true then t else succ false

Which of the following properties remains true? (Answer in the same style as the previous question.)

(a) Termination of evaluation (for every term t there is some normal form t′ such that t -→∗ t′)
Answer: Becomes false. For any term t, we can evaluate t -→ if true then t else succ false -→
t -→ . . .

(b) Progress (if t is well typed, then either t is a value or else t -→ t′ for some t′)
Answer: Remains true. As above, adding a new evaluation rule can only make it easier for the
progress property to hold.

(c) Preservation (if t has type T and t -→ t′, then t′ also has type T)

Answer: Becomes false: a well typed term like zero can now evaluate to the ill-typed term
if true then zero else succ false.

Grading scheme: -3 for each wrong answer. One point awarded for correct answer. One point awarded
for partial explanation (given generously). One point awarded for complete explanation (given spar-
ingly).

6



10. (9 points) Suppose, instead, that we add a new type, Funny, and add this new rule to the typing
relation:

if true then false else false : Funny

Which of the following properties remains true? (Answer in the same style as the previous question.)

(a) Termination of evaluation (for every term t there is some normal form t′ such that t -→∗ t′)
Answer: Remains true. Adding typing rules doesn’t change the evaluation relation or its properties.

(b) Progress (if t is well typed, then either t is a value or else t -→ t′ for some t′)
Answer: Remains true. This rule doesn’t make any new terms well typed.

(c) Preservation (if t has type T and t -→ t′, then t′ also has type T)

Answer: Becomes false: for example, the term if true then false else false has type Funny,
but reduces to false, which does not have type Funny.

Grading scheme: -3 for each wrong answer. One point awarded for correct answer. One point awarded
for partial explanation (given generously). One point awarded for complete explanation (given spar-
ingly).

7



Simply typed lambda-calculus

The definition of the simply typed lambda-calculus with booleans is reproduced for your reference on
page 13.

11. (6 points) Write down the types of each of the following terms (or “ill typed” if the term has no type).

(a) λx:Bool. x x

Answer: ill typed

(b) λf: Bool→Bool. λg:Bool→Bool. g (f (g true))

Answer: (Bool→Bool)→(Bool→Bool)→Bool
(c) λh:Bool. (λi:Bool→Bool. i false) (λk:Bool.true)

Answer: Bool→Bool
Grading scheme: Binary. Partial credit awarded for very, very close answers (like misplaced parens).

8



Operational semantics

12. (9 points) Recall the rules for “big-step evaluation” of arithmetic and boolean expressions from HW 3.

v ⇓ v

t1 ⇓ true t2 ⇓ v2

if t1 then t2 else t3 ⇓ v2

t1 ⇓ false t3 ⇓ v3

if t1 then t2 else t3 ⇓ v3

t1 ⇓ nv1

succ t1 ⇓ succ nv1

t1 ⇓ 0

pred t1 ⇓ 0

t1 ⇓ succ nv1

pred t1 ⇓ nv1

t1 ⇓ 0

iszero t1 ⇓ true

t1 ⇓ succ nv1

iszero t1 ⇓ false

The following OCaml definitions implement this evaluation relation almost correctly, but there are
three mistakes in the eval function—one each in the TmIf, TmSucc, and TmPred cases of the outer
match. Show how to change the code to repair these mistakes. (Hint: all the mistakes are omissions.)

let rec isnumericval t = match t with
TmZero(_) → true

| TmSucc(_,t1) → isnumericval t1
| _ → false

let rec isval t = match t with
TmTrue(_) → true

| TmFalse(_) → true
| t when isnumericval t → true
| _ → false

let rec eval t = match t with
v when isval v → v

| TmIf(_,t1,t2,t3) →
(match t1 with

TmTrue _ → eval t2
| TmFalse _ → eval t3
| _ → raise NoRuleApplies)

| TmSucc(fi,t1) →
(match eval t1 with

nv1 → TmSucc (dummyinfo, nv1)
| _ → raise NoRuleApplies)

| TmPred(fi,t1) →
(match eval t1 with

TmZero _ → TmZero(dummyinfo)
| _ → raise NoRuleApplies)

| TmIsZero(fi,t1) →
(match eval t1 with

TmZero _ → TmTrue(dummyinfo)
| TmSucc(_, _) → TmFalse(dummyinfo)
| _ → raise NoRuleApplies)

| _ → raise NoRuleApplies

9



Answer:

• In the TmIf clause, match t1 with should be match (eval t1) with.

• In the TmSucc clause, the guard nv1 → ... should be
nv1 when isnumericval nv1 → ... — or, equivalently, the body of the clause,
TmSucc (dummyinfo, nv1), should be replaced by
if isnumericval nv1 then TmSucc (dummyinfo, nv1) else raise NoRuleApplies

• In the TmPred clause, the whole case

| TmSucc(_, nv1) → nv1

is missing from the inner match (it should follow the TmZero case).

Grading scheme: 3 points for each bug. 1 point for finding tte correct location of agv. 2 points for correct
fix. 1 point for flawed fix. 0 for fixing "wrong" bug. No penalty for redundant call to isnumericval.

10



For reference: Untyped boolean and arithmetic expressions

Syntax

t ::= terms
true constant true
false constant false
if t then t else t conditional
0 constant zero
succ t successor
pred t predecessor
iszero t zero test

v ::= values
true true value
false false value
nv numeric value

nv ::= numeric values
0 zero value
succ nv successor value

T ::= types
Bool type of booleans
Nat type of numbers

Evaluation

if true then t2 else t3 -→ t2 (E-IfTrue)

if false then t2 else t3 -→ t3 (E-IfFalse)

t1 -→ t′1
if t1 then t2 else t3 -→ if t′1 then t2 else t3

(E-If)

t1 -→ t′1
succ t1 -→ succ t′1

(E-Succ)

pred 0 -→ 0 (E-PredZero)

pred (succ nv1) -→ nv1 (E-PredSucc)

t1 -→ t′1
pred t1 -→ pred t′1

(E-Pred)

iszero 0 -→ true (E-IszeroZero)

iszero (succ nv1) -→ false (E-IszeroSucc)

t1 -→ t′1
iszero t1 -→ iszero t′1

(E-IsZero)

continued on next page...

11



Typing

true : Bool (T-True)

false : Bool (T-False)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

0 : Nat (T-Zero)

t1 : Nat

succ t1 : Nat
(T-Succ)

t1 : Nat

pred t1 : Nat
(T-Pred)

t1 : Nat

iszero t1 : Bool
(T-IsZero)

12



For reference: Simply typed lambda calculus with booleans

Syntax

t ::= terms
true constant true
false constant false
if t then t else t conditional
x variable
λx:T.t abstraction
t t application

v ::= values
true true value
false false value
λx:T.t abstraction value

T ::= types
Bool type of booleans
T→T type of functions

Evaluation

if true then t2 else t3 -→ t2 (E-IfTrue)

if false then t2 else t3 -→ t3 (E-IfFalse)

t1 -→ t′1
if t1 then t2 else t3 -→ if t′1 then t2 else t3

(E-If)

t1 -→ t′1
t1 t2 -→ t′1 t2

(E-App1)

t2 -→ t′2
v1 t2 -→ v1 t′2

(E-App2)

(λx:T11.t12) v2 -→ [x, v2]t12 (E-AppAbs)

Typing

true : Bool (T-True)

false : Bool (T-False)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

x:T ∈ Γ
Γ ` x : T

(T-Var)

Γ , x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2
(T-Abs)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

13


