
CIS 500 Software Foundations
Homework Assignment 1

Basic OCaml Programming

Due: Monday, September 8, 2003, by noon

Instructions:

• Submit your solutions by email to cis500@seas.upenn.edu. Include your full name in the
message.

• Solutions to all problems are provided at the end of this handout, so that you can check your
answers before turning them in. You may also peek at the solutions for help if you feel stuck,
but (obviously) we do not recommend simply copying the solution.

• All the homeworks will be graded on a binary scale: you must turn in solutions to all required
problems to receive credit for the assignment.

One problem below is marked optional. You may turn in a solution for this problem or not,
whichever you prefer.

• Collaboration on homework assignments is strongly encouraged. You may talk with people
about the problems, work together on solving them, discuss any aspect of the problem in the
newsgroup, etc.

However, even if you have worked all the problems together with others, you must turn in your
own copy of the solutions. We strongly recommend that you talk through the solutions with
others but then go away and write them out by yourself, to make sure that you understand
them completely.

• The instructions given in Chapter 2 of Introduction to Objective Caml (see below) should
suffice for learning to interact with the OCaml compiler and “toploop” on eniac and gradient
(don’t worry if the version numbers don’t match). If you would like to install ocaml on your
own machine, binaries for various platforms as well as a source distribution are available here:

http://caml.inria.fr/ocaml/distrib.html

As noted here, some Linux distributions also come with OCaml packages ready to install, so
you may want to check your CDs. OCaml is straightforward to build from sources on most
UNIX-like systems if you are accustomed to doing such things, however we do not have the
resources to help everyone with installing OCaml at home — it’s up to you.
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Reading assignment: Before beginning the programming exercises below, read Chapters 1
through 5 of Jason Hickey’s Introduction to Objective Caml. Don’t worry if you find Chapter
5 a little dense—for the moment, all you need from it is the examples of simple list processing
functions.

1 Exercise The nth Fibonacci number, fibn, is defined recursively as follows: fib0 = 0, fib1 = 1
and for all n ≥ 2, fibn = fibn−1 + fibn−2. Write an OCaml function fib that implements this
algorithm. Try out your function on inputs 7, 20, and 33 (the results should be 13, 6765 and
3524578, repectively).

Even on a very fast machine, you should see a noticeable delay on calculating fib33. Finding
Fibonacci numbers much bigger than this one will take much longer than you are likely to want
to wait. (To see why this is the case, consider how many additions your function must perform to
compute a given Fibonacci number.)

As you can see, it’s often not the case that the most obvious implementation will yield the
best performance. Write a tail-recursive function fib_tr that also computes the nth Fibonacci
number. Recall that a tail-recursive function is a recursive function in which there is at most a
single recursive call in each control path, and that recursive call must be the final statement in that
control path. To write fib_tr, you will need to write a tail-recursive auxiliary function that does
all of the real work and that fib_tr just calls once. Note that only fib_tr will need to call this
auxiliary function, so you might as well define it in a let block inside the body of fib_tr – see
section 3.1.1 of Jason Hickey’s notes for a simple example of this. Try fib_tr on 7, 20, and 33.

2 Exercise Write a function evenmembers that takes a list of integers as input and returns a list
containing just the even members of the original list. For example:

# evenmembers [1;2;3;5;6;8;9];;

: int list = [2; 6; 8]

3 Exercise Write a function append that takes two lists and returns a new list containing the
members of the first list followed by the members of the second list. For example:

# append [1;2;3] [4;5];;

: int list = [1; 2; 3; 4; 5]

4 Exercise [Optional]
Write functions that implement basic set operations using lists. In particular, you should write

the following functions:

• member x s : returns true if x is in s; false otherwise

• add x s : returns a new set with x added to s if it is not already there

• union s1 s2 : returns a new set that is the union of s1 and s2

• inter s1 s2 : returns a new set this is the intersection of s1 and s2

• subset s1 s2 : returns true is s1 is a subset of s2; false otherwise
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You may assume that union, inter, and subset get only sets as their arguments, i.e. that there
are no repetitions. Said another way, you can assume that sets are only constructed with add. An
example:

# let s1 = add 1 (add 2 (add 3 (add 4 (add 5 []))));;

val s1 : int list = [1; 2; 3; 4; 5]

# let s2 = add 6 (add 7 (add 4 (add 8 (add 9 (add 5 (add 0 []))))));;

val s2 : int list = [6; 7; 4; 8; 9; 5; 0]

# member 2 s1;;

- : bool = true

# member 2 s2;;

- : bool = false

# union s1 s2;;

- : int list = [1; 2; 3; 6; 7; 4; 8; 9; 5; 0]

# inter s1 s2;;

- : int list = [4; 5]

# subset s1 s2;;

- : bool = false

# subset (inter s1 s2) s2;;

- : bool = true

5 Exercise Write a function permute which takes a list and returns a list of all possible permutations
of the input list. For example:

# permute [1;2;3];;

- : int list list =

[[1; 2; 3]; [2; 1; 3]; [2; 3; 1]; [1; 3; 2]; [3; 1; 2]; [3; 2; 1]]

# permute [1;2];;

- : int list list = [[1; 2]; [2; 1]]

# permute [1];;

- : int list list = [[1]]

# permute [];;

- : ’_a list list = []

(The order of the results in your solution may vary from what is shown above.)

6 Debriefing

1. Approximately how many hours did you spend on this assignment?

2. Would you rate it as easy, moderate, or difficult?

3. Did you work on it mostly alone, or mostly with other people?

4. How deeply do you feel you understand the material it covers (0%–100%)?

5. Any other comments?

This question is intended to help us calibrate the homework assignments. Your answers will not
affect your grade.
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Solutions

1.

let rec fib = function

0 -> 0

| 1 -> 1

| n -> fib (n - 2) + fib (n - 1);;

let fib_tr n =

let rec fib_loop previous sum counter =

match counter with

0 -> sum

| n -> fib_loop sum (previous + sum) (counter - 1)

in fib_loop 1 0 n

2.

let iseven n = ((n mod 2) = 0)

let rec evenmembers = function

[] -> []

| x::xs -> if (iseven x) then x::evenmembers xs

else evenmembers xs

3.

let rec append l1 l2 =

match l1 with

[] -> l2

| x::xs -> x::(append xs l2)

4.

let rec member x s =

match s with

[] -> false

| y::ys -> (x = y) || member x ys

let add x s = if (member x s) then s else x::s

let rec union s1 s2 =

match s1 with

[] -> s2

| x::xs -> add x (union xs s2)
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let rec inter s1 s2 =

match s1 with

[] -> []

| x::xs -> if (member x s2) then x::(inter xs s2) else inter xs s2

let rec subset s1 s2 =

match s1 with

[] -> true

| x::xs -> (member x s2) && (subset xs s2)

5. There are several ways of listing permutations: one is below. This solution uses the OCaml
standard library function List.append to append two lists, but you could also try using your own
append function from exercise 3.

let rec percolate_right element left right =

match right with

[] -> [List.append left [element]]

| rightHead::rightTail ->

(List.append (List.append left [element]) right)

::(percolate_right element (List.append left [rightHead]) rightTail)

let rec insert element = function

[] -> []

| firstList::restLists ->

List.append (percolate_right element [] firstList)

(insert element restLists);;

let rec permute = function

[] -> []

| [x] -> [[x]]

| x::xs -> insert x (permute xs)
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