
CIS 500 Software Foundations

Homework Assignment 2

More OCaml Programming

Due: Monday, September 15 by noon

The procedure for submitting your solution to this assignment is different from the first home-

work. Instructions can be found at http://www.seas.upenn.edu/∼cis500/homework.html.

1 Exercise Consider the following datatype of tokens:

type token =

Num of int

| Plus

| Minus

| Times

| LParen

| RParen

Write a function lex that takes a list of characters as input and produces a list of tokens as output. Your
function should:

• map sequences of digits to appropriate instances of the Num constructor

• map the characters ’+’, ’-’, ’*’, ’(’, and ’)’ to Plus, Minus, Times, LParen, and RParen, respec-
tively

• ignore whitespace (the ’ ’ and ’\n’ characters)

• fail (by raising the exception Bad) on all other characters

Examples:

lex [’(’;’1’;’2’;’+’;’3’;’4’;’0’;’)’;’ ’];;

- : token list = [LParen; Num 12; Plus; Num 340; RParen]

lex [’+’;’ ’;’*’];;

- : token list = [Plus; Times]

lex [’a’];;

Exception: Bad.

lex [];;

- : token list = []

lex [’(’;’(’;’1’;’2’;’+’;’3’;’4’;’0’;’)’;’*’;’ ’;’ ’;’\n’;’5’;’)’];;

- : token list =

[LParen; LParen; Num 12; Plus; Num 340; RParen; Times; Num 5; RParen]

2 Exercise Here is a very simple grammar of fully parenthesized arithmetic expressions,

exp ::= n number
(exp + exp) parenthesized sum of expressions
(exp − exp) parenthesized difference of expressions
(exp ∗ exp) parenthesized product of expressions

1

and here is a datatype definition representing the corresponding type of abstract syntax trees (which we saw
in class).

type ast =

ANum of int

| APlus of ast * ast

| AMinus of ast * ast

| ATimes of ast * ast;;

Write a function parse that takes a list l of tokens and produces a pair (e,l’), where e is a value of type
ast (following the above grammar) and l’ is a list of tokens representing the portion of l that was left over
after parsing e. Your function should raise the exception Bad if the token list does not correspond to a legal
expression.
Examples:

parse [Num 50];;

- : ast * token list = (ANum 50, [])

parse [LParen; Num 50];;

Exception: Bad.

parse [LParen; Num 12; Plus; Num 340; RParen];;

- : ast * token list = (APlus (ANum 12, ANum 340), [])

parse [LParen; LParen; Num 12; Plus; Num 340; RParen; Times; Num 5; RParen];;

- : ast * token list = (ATimes (APlus (ANum 12, ANum 340), ANum 5), [])

parse [LParen; Num 12; Plus; Num 340; RParen; Times; Num 5];;

- : ast * token list = (APlus (ANum 12, ANum 340), [Times; Num 5])

3 Exercise Put all of the pieces together: take the eval function given in lecture together with your lex and
parse functions and write a function calc that takes a string and returns an integer. If the string represents
a valid arithmetic expression, calc function should return its value as computed by eval. If it is not a valid
expression, it should raise the exception Bad.
Examples:

calc "((1+2)*3)";;

- : int = 9

calc "(1+2) 5";;

Exception: Bad.

calc "((2+1) * (11+8))";;

- : int = 57

You’ll probably need the function charl_from_string, defined below:

let rec charl_from_string s =

match s with

"" -> []

| _ -> (String.get s 0)::

(charl_from_string (String.sub s 1 ((String.length s)-1)))

2

4 Exercise

• The forall function takes a predicate p (a one-argument function returning a boolean) and a list l

and checks whether p returns true when applied to every element of l.

forall (fun x -> x >= 3) [10;11;55];;

- : bool = true

forall (fun x -> x >= 3) [5;1;7;9];;

- : bool = false

Write forall as a recursive function.

• Rewrite forall as compactly as possible (e.g., using fold).

• Can the hd function be implemented in terms of map, fold, etc.?

• [Optional and challenging] How about tl?

5 Debriefing

1. How many hours did you spend on this assignment?

2. Would you rate it as easy, moderate, or difficult?

3. Did you work on it mostly alone, or mostly with other people?

4. How deeply do you feel you understand the material it covers (0%–100%)?

5. Any other comments?

3

Solutions

1.

type token =

Num of int

| Plus

| Minus

| Times

| LParen

| RParen

exception Bad

let rec lex s =

match s with

[] -> []

| x::rest ->

match x with

’ ’ | ’\n’ -> lex rest

| ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’ -> lexn s

| ’+’ -> Plus :: (lex rest)

| ’-’ -> Minus :: (lex rest)

| ’*’ -> Times :: (lex rest)

| ’(’ -> LParen :: (lex rest)

| ’)’ -> RParen :: (lex rest)

| _ -> raise Bad

and lexn s =

let rec loop acc s’ =

match s’ with

[] ->

[Num acc]

| x::rest ->

let digit d = loop (acc*10 + d) rest in

match x with

’0’ -> digit 0

| ’1’ -> digit 1

| ’2’ -> digit 2

| ’3’ -> digit 3

| ’4’ -> digit 4

| ’5’ -> digit 5

| ’6’ -> digit 6

| ’7’ -> digit 7

| ’8’ -> digit 8

| ’9’ -> digit 9

| _ -> (Num acc) :: lex s’

in loop 0 s;;

4

2.

type ast =

ANum of int

| APlus of ast * ast

| AMinus of ast * ast

| ATimes of ast * ast;;

let rec parse l =

match l with

(Num i) :: rest -> (ANum i, rest)

| LParen::rest ->

(let (e1,rest1) = parse rest in

let (op,restop) = match rest1 with o::r -> (o,r) | [] -> raise Bad in

let (e2,rest2) = parse restop in

let e =

match op with

Plus -> APlus(e1,e2)

| Minus -> AMinus(e1,e2)

| Times -> ATimes(e1,e2)

| _ -> raise Bad in

match rest2 with

RParen::rest3 -> (e, rest3)

| _ -> raise Bad)

| _ -> raise Bad;;

3.

let calc s =

let parsed_result = parse (lex (charl_from_string s)) in

match parsed_result with

(tree,[]) -> eval tree

| _ -> raise Bad

5

4.

• let forall p l =

let rec loop ll =

match ll with

[] -> true

| x::rest -> (p x) && (loop rest)

in loop l;;

• let forall p l = fold (fun x y -> x && y) true (map p l);;

• exception EmptyList;;

let hd l =

match

fold (fun x y -> Some x) None l

with

Some(x) -> x

| _ -> raise EmptyList;;

• let tl l =

if l = [] then raise EmptyList else

let t,_ = (fold (fun e (l1,l2) -> (l2,e::l2)) ([],[]) l) in

t;;

6

