‘CIS 500 Software Foundations‘
Homework Assignment 3

Induction; Operational Semantics
Due: Monday, September 22, 2002, by noon

Submission instructions:

You may submit your solutions either electronically (in ascii, postscript, or PDF format) or in handwritten
hardcopy form.

e Hand-written solutions should be submitted to Jennifer Finley in Levine 302.

e Electronic solutions should be submitted following the same instructions as last time; these can be
found at http://www.seas.upenn.edu/~cis500/homework.html.



1 Exercise Explain the flaw in the following “proof.”

Theorem(?!): All horses are the same color.

Proof: Let P(n) be the predicate “in all non-empty collections of n horses, all the horses are
the same color.” We show that P(n) holds for all n by induction on n (using 1 as the base case).

Base case: Clearly, P(1) holds.
Induction case: Given P(n), we must show P(n + 1).

Consider an arbitrary collection of n + 1 horses. Remove one horse temporarily. Now we have n
horses and hence, by the induction hypothesis, these n horses are all the same color. Now call
the exiled horse back and send a different horse away. Again, we have a collection of n horses,
which, by the induction hypothesis, are all the same color. Moreover, these n horses are the same
color as the first collection. Thus, the horse we brought back was the same color as the second
horse we sent away, and all the n + 1 horses are the same color.

2 Exercise How about this one?

Theorem(?!): n? + n is odd for every n > 1.

Proof: By induction on n (again starting from 1). For the base case, observe that 1 is odd by
definition. For the induction step, assume that n2 +n is odd; we then show that (n+1)%+(n+1)
is odd as follows. (n+1)2+ (n+1)=n?+2n+1+n+1=(n?>+n)+ (2n+2). But n> +n
is odd by the induction hypothesis, and 2n + 2 is clearly even. Thus, (n? +n) + (2n + 2) is the
sum of an odd number and an even number, hence odd.

3 Exercise [Optional] Make up your own “false proof” in which an incorrect use of the induction hypothesis
leads to a surprising conclusion.

4 Exercise 3.5.13 in TAPL.
5 Exercise 3.5.17 in TAPL.

6 Exercise 4.2.2 in TAPL.

To complete this exercise, you will need to download your own copy of the files for the arith implementation.
These files can be found on the TAPL web site

http://www.cis.upenn.edu/~bcpierce/tapl/checkers/arith.tar.gz (as a single bundle)
http://www.cis.upenn.edu/~bcpierce/tapl/checkers/arith (as separate files)

Instructions for compiling these files into a running implementation can be found here:
http://www.cis.upenn.edu/~bcpierce/tapl/resources.html#checkers

Chapter 10 of Jason Hickey’s notes has more information on OCaml compilation.
The only changes you will need to make for this problem are to the eval function in the file core.ml. Please
include your version of just this file in the solutions you hand in.



7 Debriefing
1. Are you in a study group?
2. If so, who else is in it?

How many hours did you spend on this assignment?

- W

Would you rate it as easy, moderate, or difficult?
5. Did you work on it mostly alone, or mostly with your study group?
6. How deeply do you feel you understand the material it covers (0%—100%)?

If you have any other comments, we would like to hear them; please send them directly to bcpierce@cis.upenn.edu
to make sure they don’t get lost in a pile of homeworks!



Solutions

The solutions not given here can be found in the back of the book.

1. The problem with this proof is that the inductive step does not work for all n, namely for n = 1.
According to our proof, to show that n + 1 = 2 horses are the same color, we consider horse #1 with color
C1 and then we separately consider horse #2 with color C5. The two groups of horses have no overlapping
members, and thus we have no reason to assert that these two horses have the same color. The argument
works fine when n > 1, but the n = 1 case invalidates the induction.

2. The base case is confused — it does not show what it needs to show.

6. The definitions of NoRuleApplies, isnumericval, and isval are the same as in the original; evall is
deleted; eval is rewritten as follows:

let rec eval t = match t with
v when isval v -> v
| TmIf(_,t1,t2,t3) —>

begin

match eval tl1 with

TmTrue _ -> eval t2

| TmFalse _ -> eval t3

| _ -> raise NoRuleApplies
end

| TmSucc(fi,tl1) ->

begin

match eval tl1 with
nvl when isnumericval nvl -> TmSucc (dummyinfo, nvl)
| _ -> raise NoRuleApplies
end
| TmPred(fi,t1) ->
begin
match eval tl1 with
TmZero _ -> TmTrue(dummyinfo)
| TmSucc(_, nvl) -> nvil
| _ -> raise NoRuleApplies
end
| TmIsZero(fi,tl) ->
begin
match eval tl1 with
TmZero _ -> TmTrue (dummyinfo)
| TmSucc(_, _) -> TmFalse(dummyinfo)
| _ -> raise NoRuleApplies
end
| _ ->
raise NoRuleApplies



