
CIS 500

Software Foundations

Fall 2003

3 September

CIS 500, 3 September 1

Course Overview

CIS 500, 3 September 2

What is “software foundations”?

Software foundations (a.k.a. “theory of programming languages”) is the

study of the meaning of programs.

The goal is finding ways to describe program behaviors that are both

precise and abstract.

CIS 500, 3 September 3

Why study software foundations?

� To be able to prove specific facts about particular programs (i.e.,

program verification)

Important in some domains (safety-critical systems, hardware design,

security protocols, inner loops of key algorithms, ...), but still quite

difficult and expensive
� To develop intuitions for informal reasoning about programs

� To prove general facts about all the programs in a given

programming language (e.g., safety or isolation properties)

� To understand language features (and their interactions) deeply and

develop principles for better language design

PL is the ”materials science” of computer science...

CIS 500, 3 September 4

What you can expect to get out of the course

� A more sophisticated perspective on programs, programming

languages, and the activity of programming

� How to view programs and whole languages as formal,

mathematical objects

� How to make and prove rigorous claims about them

� Detailed study of a range of basic language features

� Deep intuitions about key language properties such as type safety

� Powerful tools for language design, description, and analysis

N.b.: most software designers are language designers!

CIS 500, 3 September 5

What this course is not

� An introduction to programming (if this is what you want, you should

be in CIT 591)

� A course on functional programming (though we’ll be doing some

functional programming along the way)

� A course on compilers (you should already have basic concepts such

as lexical analysis, parsing, abstract syntax, and scope under your belt)

� A comparative survey of many different programming languages and

styles (boring!)

CIS 500, 3 September 6

Approaches

“Program meaning” can be approached in many different ways.

� Denotational semantics and domain theory view programs as simple
mathematical objects, abstracting away their flow of control and
concentrating on their input-output behavior.

� Program logics such as Hoare logic and dependent type theories
focus on systems of logical rules for reasoning about programs.

� Operational semantics describes program behaviors by means of
abstract machines. This approach is somewhat lower-level than the
others, but is extremely flexible.

� Process calculi focus on the communication and synchronization
behaviors of complex concurrent systems.

� Type systems describe approximations of program behaviors,
concentrating on the shapes of the values passed between different
parts of the program.

CIS 500, 3 September 7

Overview

In this course, we will concentrate on operational techniques and type

systems.

� Part O: Background

� A taste of OCaml

� Functional programming style
� Part I: Basics

� Operational semantics

� Inductive proof techniques

� The lambda-calculus

� Evaluator implementation

� Syntactic sugar; fully abstract translations

CIS 500, 3 September 8

� Part II: Type systems
� Simple types

� Type safety

� References

� Subtyping

� Part III: Object-oriented features (case study)

� A simple imperative object model

� An analysis of core Java

CIS 500, 3 September 9

Administrative Stuff

CIS 500, 3 September 10

Personnel

Instructor: Benjamin Pierce

Levine 304

� � � � � � � � � � � � � 	 � �

 � � � 	

Office hours this week:

Wed, 3:00–5:00

Office hours beginning next week:

Wed, 5:00–6:00 and Thu 4:15–5:15

Teaching Assistants: Peng Li

Stephen Tse

Geoff Washburn

Administrative Assistant: Jennifer Finley, Levine 302

CIS 500, 3 September 11

Information

Textbook: Types and Programming Languages,

Benjamin C. Pierce, MIT Press, 2002

Webpage: � � � � � � � � � � � � � � 	 � �

 � � � 	 �
� � � � � � �

Newsgroup: 	 � �

 � � � � � � � � � � �

CIS 500, 3 September 12

Exams

1. First mid-term: Wednesday, October 8, in class

2. Second mid-term: Wednesday, November 12, in class

3. Final: Wednesday, December 17, 11–1

Additional administrative information will be posted as necessary during

the semester. Keep an eye on the course web page and (especially) the

newsgroup.

CIS 500, 3 September 13

Grading

Final course grades will be computed as follows:

� Homework: 20%

� 2 midterms: 20% each

� Final: 40%

CIS 500, 3 September 14

Extra Credit

Course grades can be improved after the semester ends in two ways:

1. A 1/3 letter grade improvement can be obtained by doing a

substantial extra credit project (� 30 hours work) during the Spring

semester.

2. Larger grade improvements can (only) be obtained by sitting in on

the course next year and turning in all homeworks and exams.

CIS 500, 3 September 15

Collaboration

� Collaboration on homework is strongly encouraged

� Studying with other people is the best way to internalize the material

� Form study groups!

(3 people is a nice size. 2 or 4 is OK. � 5 is too many.)
� Next week, we will help form groups for those that have not already

done so

“You never really misunderstand something

until you try to teach it...”

— Anon.

CIS 500, 3 September 16

Homework

� Work outside class will involve both assigned readings (mostly from
TAPL) and regular homework assignments (approximately one per
week)

� Reading assignments should be completed before the material is
discussed in lecture (the lecture schedule can be found on the course
web page)

� Complete understanding of the homework assignments is extremely
important to your mastery of the course material (and, hence, your
performance on the exams)

� Solutions to each assignment will be distributed together with the
assignment (or can be found in the back of the textbook)

� The grading scale for homework assignments is binary

� Late (non-)policy: Homework will not be accepted after the
announced deadline

CIS 500, 3 September 17

First Homework Assignment

� The first homework assignment (on basic OCaml programming) is due

next Monday by noon.

� You will need:

� An account on a machine where OCaml is installed (you can also

install OCaml on your own machine if you like)

� Jason Hickey’s notes on OCaml (read chapters 1-5)

CIS 500, 3 September 18

Recitations

� Everyone in the class should attend one of the recitation sections

� Meetings of recitation sections will start next week

� There are two kinds of recitations:

1. Review sections will focus on material close to what is presented in
class and on homeworks

2. Advanced sections will introduce additional related material

Wednesday, 3:30-5:00PM Levine 612 Advanced

Wednesday, 6:00-7:30PM Towne 309 Advanced

Thursday, 6:00-7:30PM Towne 309 Review

Thursday, 5:00-6:30PM Towne 305 Review

Thursday, 6:30-8:00PM Towne 305 Advanced

Thursday, 6:00-7:30PM Towne 303 Review

Friday, 9:00-10:30AM Moore 212 Review

CIS 500, 3 September 19

The WPE-I

� PhD students in CIS must pass a five-section Written Preliminary

Exam (WPE-I)

Software Foundations is one of the five areas

� The final for this course is also the software foundations WPE-I exam
� Near the end of the semester, you will be given an opportunity to

declare your intention to take the final exam for WPE credit

CIS 500, 3 September 20

The WPE-I (continued)

� You do not need to be enrolled in the course to take the exam for

WPE credit

� If you are enrolled in the course and also take the exam for WPE

credit, you will receive two grades: a letter grade for the course final

and a Pass/Fail for the WPE

� You may take the exam for WPE credit even if you are not currently

enrolled in the PhD program.

CIS 500, 3 September 21

The WPE-I syllabus

� Reading knowledge of core OCaml

� Chapters 1-11 and 13-19 of TAPL

CIS 500, 3 September 22

Announcement

� The department offers a Faculty Research Seminar most weeks

during the Fall semester

� Friday afternoons, 3:30 – 4:30, in Levine Auditorium

� Speakers and topics are announced on the CIS newsgroups

� First-year CIS PhD students are required to attend. Others are

welcome.

CIS 500, 3 September 23

A Whirlwind Tour of OCaml

CIS 500, 3 September 24

OCaml and this course

The material in this course is mostly conceptual and mathematical.

However, experimenting with small implementations is an excellent way to

deepen intuitions about many of the concepts we will encounter. For this

purpose, we will use the OCaml language.

OCaml is a large and powerful language. For our present purposes,

though, we can concentrate just on the “core” of the language, ignoring

most of its features. In particular, we will not need modules or objects.

CIS 500, 3 September 25

Functional Programming

OCaml is a functional programming language — i.e., a language in which
the functional programming style is the dominant idiom. Other well-known
functional languages include Lisp, Scheme, Haskell, and Standard ML.

The functional style can be described as a combination of...

� persistent data structures (which, once built, are never changed)

� recursion as a primary control structure

� heavy use of higher-order functions (functions that take functions as
arguments and/or return functions as results)

Imperative languages, by contrast, emphasize

� mutable data structures

� looping rather than recursion

� first-order rather than higher-order programming (though many
object-oriented “design patterns” involve higher-order idioms—e.g.,
Subscribe/Notify, Visitor, etc.)

CIS 500, 3 September 26

Computing with Expressions

OCaml is an expression language. A program is an expression. The

“meaning” of the program is the value of the expression.

� � � � � � � �

� � �
 � � 	

�
 � � � � � � � �

� � �
 � � 	

CIS 500, 3 September 27

The top level

OCaml provides both an interactive top level and a compiler that

produces standard executable binaries. The top level provides a

convenient way of experimenting with small programs.

The mode of interacting with the top level is typing in a series of

expressions; OCaml evaluates them as they are typed and displays the

results (and their types). In the interaction above, lines beginning with �

are inputs and lines beginning with � are the system’s responses. Note

that inputs are always terminated by a double semicolon.

CIS 500, 3 September 28

Giving things names

The � � construct gives a name to the result of an expression so that it

can be used later.
� � � �
 � � � � � � � � �� � � �
 � � � � � � � � �

� � � �
 � � � � � � � � �� � � �
 � � � � � �

� � � � � � � � � � � � � �
 � � � � � � � � � � � � �

� � � � � �
 � � �

CIS 500, 3 September 29

Functions

� � � � 	 � � � � � �
 � � � � � � � � �

� � � � 	 � � � �
 � � �
 � 	
 	
 �

� � 	 � � � � �

� � �
 � �
 �

We call � the parameter of the function � 	 � � ; the expression � � � � � is its

body.

The expression � 	 � � � is an application of � 	 � � to the argument � .

The type printed by OCaml, �
 � � �
 (pronounced “ �
 arrow �
 ”)

indicates that � 	 � � is a function that should be applied to a single, integer

argument and that returns an integer.

Note that OCaml responds to a function declaration by printing just 	
 	
 �

as the function’s “value.”

CIS 500, 3 September 30

Here is a function with two parameters:

� � � � 	 � � � � � �
 � � � � �
 � � � � � � � � � � �

� � � � 	 � � � �
 � � �
 � � �
 � 	
 	
 �

� � 	 � � � 	 � �

� � �
 �
 �

The type printed for � 	 � � is �
 � � �
 � � �
 , indicating that it should be

applied to two integer arguments and yields an integer as its result.

Note that the syntax for invoking function declarations in OCaml is

slightly different from languages in the C/C++/Java family: we write

� 	 � � � and � 	 � � � 	 rather than � 	 � � � � � and � 	 � � � � � 	 � .

CIS 500, 3 September 31

The type boolean

There are only two values of type � � � � � �
 : � 	 � and
 � � � � .

Comparison operations return boolean values.

� � �
 � �

� � � � � � �
 � � � �

� 	 � � � � �

� � � � � � � � 	 �

 � is a unary operation on booleans.

�
 � � � 	 � � � � � �

� � � � � � �
 � � � �

�
 � �
 �
 � � �

� � � � � � �
 � � � �

CIS 500, 3 September 32

Conditional expressions

The result of the conditional expression �
 � � �
 � � � � � � �
 is either

the result of � � or that of �
 , depending on whether the result of � is

 � 	 � or
 � � � � .

� �
 � 	 	 � �
 � � � � � � � � � �

� � �
 � �

� �
 � 	 	 � �
 � � � � � � � � � � � � � � � � � �

� � �
 � �

� �

 � � � � � �
 � � � � � � � � � � � � � � � � � �

� � �
 � � � �

� �

 � � � � � �

 � � � � � � � � � 	 � � �

� � � � � � � � 	 �

CIS 500, 3 September 33

Defining things inductively

In mathematics, we often define things inductively by giving a “base case”

and an “inductive case”. For example, the sum of all integers from � to

� or the product of all integers from � to � :

sum � � � � �

sum � � � � � � sum � � 	 � � if � � �

fact � � � � �

fact � � � � �
 fact � � 	 � � if � � �

It is customary to extend the factorial to all non-negative integers by

adopting the convention fact � � � � � .

CIS 500, 3 September 34

Recursive functions

We can translate inductive definitions directly into recursive functions.

� � � � � � � 	 � �
 � �
 � � �

 � � � �
 � � � � �
 � � 	 � �
 � � � � �

� � � � 	 � � �
 � � �
 � 	
 	
 �

� � 	 � � � � � �

� � �
 �
 �

� � � � � �
 � � �
 � �
 � � �

 � � � �
 � � � � �
 �
 � � �
 � � � � �

� � �
 � � � �
 � � �
 � 	
 	
 �

�
 � � � � � � �

� � �
 � �
 �

The � � � after the � � tells OCaml this is a recursive function — one that

needs to refer to itself in its own body.

CIS 500, 3 September 35

Making Change

Another example of recursion on integer arguments. Suppose you are a

bank and therefore have an “infinite” supply of coins (pennies, nickles,

dimes, and quarters, and silver dollars), and you have to give a customer

a certain sum. How many ways are there of doing this?

For example, there are 4 ways of making change for 12 cents:

12 pennies

1 nickle and 7 pennies

2 nickles and 2 pennies

1 dime and 2 pennies

We want to write a function � � �
 � � that, when applied to 12, returns 4.

CIS 500, 3 September 36

Making Change – continued

To get started, let’s consider a simplified variant of the problem where

the bank only has one kind of coin: pennies.

In this case, there is only one way to make change for a given amount:

pay the whole sum in pennies!

� � � � � � �
 � � � � �
 � � � �
 � � �
 � �

 � � � � �

� � � � � � � �
 � � � � � � �
 � � � � �

That wasn’t very hard.

CIS 500, 3 September 37

Making Change – continued

Now suppose the bank has both nickels and pennies.

If � is less than 5 then we can only pay with pennies. If not, we can do

one of two things:

� Pay in pennies; we already know how to do this.

� Pay with at least one nickel. The number of ways of doing this is the

number of ways of making change (with nickels and pennies) for � � � .

� � � � � � �
 � � � � �
 � � � �
 � �
 � �

 � � � �
 �
 � � � � � � � �

� � � � � � � �
 � � � � � � � �
 � �

�
 � 	 � � �
 � � �
 � � � �

� � � � � � �
 � � � � � � � �
 � � � � � � � � � � �

CIS 500, 3 September 38

Making Change – continued

Continuing the idea for dimes and quarters:

� � � � � � � �

 � � � �
 � � � � � � � � � � � � � �

� � � � � � � �
 � � � � � � � � �
 � �

�
 � 	 � � � �
 � � �
 � � � � �

� � � � � � �
 � � � � � � � � �
 � � � � � � � � � � � � �

� � � � � � � �

 � � � �
 � � � � � � � � � � � � � 	 � � � � � � �

� � � � � � � �
 � � � � � � � � � �
 � �

�
 � 	
 � � �
 � � �
 � � � � � �

� � � � � � �
 � � � � � � � � � �
 � � � � � � � � �
 � � � �

CIS 500, 3 September 39

Finally:

� � � � �

 � � � �
 � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � �

� � � � � � � �
 � � � � � �
 � �

�
 � 	 � � � � �
 � � �
 � � � � � � �

� � � � � � �
 � � � � � � � � � � �
 � � � � � � � � � � �

Some tests:

� � � �
 � � � � �

� � �
 �

� � � �
 � � � � �

� � �
 �

� � � �
 � � � � � �

� � �
 � 	

CIS 500, 3 September 40

� � � �
 � �
 � � �

� � �
 � � �

� � � �
 � � � � � �

� � �
 � � �

� � � �
 � � � � � � �

� � �
 �
 	 �

� � � �
 � � 	 � � � �

� � �
 � � � � � �

CIS 500, 3 September 41

Lists

One handy structure for storing a collection of data values is a list. Lists

are provided as a built-in type in OCaml and a number of other popular

languages (e.g., Lisp, Scheme, and Prolog—but not, unfortunately, Java).

We can build a list in OCaml by writing out its elements, enclosed in

square brackets and separated by semicolons.

� � � � � �
 � � � � �

� � �
 � � � � � � � � �
 � � �

The type that OCaml prints for this list is pronounced either “integer list”

or “list of integers”.

The empty list, written � � , is sometimes called “nil.”

CIS 500, 3 September 42

The types of lists

We can build lists whose elements are drawn from any of the basic types

(�
 , � � � � , etc.).

� �
�
� �
�

�

�
� � �
�

�

�
�
 	
�
� � �

� � � � �
 � � � � � �
�
� �
�

�

�
� � �
�

�

�
�
 	
�
�

� � � 	 � � � 	 � �
 � � � � � � �

� � � � � � � � � � � � 	 � � � 	 � �
 � � � � �

We can also build lists of lists:

� � � � �
 � � �
 � � � 	 � � � � � � � �

� � �
 � � � � � � � � � � �
 � � �
 � � � 	 � � � � � �

In fact, for every type , we can build lists of type � � � .

CIS 500, 3 September 43

Lists are homogeneous

OCaml does not allow different types of elements to be mixed within the

same list:

� � � �
 �

�
� � �
�
� � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � �
 � � � � � � � � �
 � � � � � 	 � � � � � � 	 � � �

� � � � � � �
 � � �

CIS 500, 3 September 44

Constructing Lists

OCaml provides a number of built-in operations that return lists. The
most basic one creates a new list by adding an element to the front of
an existing list. It is written � � and pronounced “cons” (because it
constructs lists).

� � � � �
 � � � � �

� � �
 � � � � � � �
 � � �

� � � � � � �
 � �� � �
 � � � � � � � �
 � � � � � � � �

� � � � � � �
 � � �
 � � � � � �
 � � � � 	
 	
 �

� � � � �
 � � � � � � � � � �

� � �
 � � � � � � �
 � � � � � � � � �

� � � � �
 � � � � �

� � �
 � � � � � � �
 � � �

CIS 500, 3 September 45

Some recursive functions that generate lists

� � � � � � � � � � � � � � �
 � �
 � �
 � � � � � � � � �

 � � � � � � �
 � � �

�

 � � � �
 � �

� � � � � � � � � � � � � �
 � � � � �

� � � � � � � �
 � �

� � �
 � � � �

� � � � � �
 � � � � � � � � �
 � �
 � �
 � � � � � � �
 	 � � � � �
 � � � � �
 � �

�

 	 � � �
 � �

� � � � � � �
 � � � � � � � � � �
 � �

�
 � � � � � � � � � �

� � �
 � � � � � � � � � � � � � �
 � � � � � 	 � � � � � � � � � � � � �

CIS 500, 3 September 46

Constructing Lists

Any list can be built by “consing” its elements together:

�
� � � �
 � � � � �
 � � � � � � � � � �

� � �
 � � � � � � �
 � � �
 � � �

In fact,

� � � � � � � � � � � � � �

is simply a shorthand for

� � � � � � � � � � � � � � � � � � �

Note that, when we omit parentheses from an expression involving

several uses of � � , we associate to the right—i.e., � � �
 � � � � � � � means the

same thing as � � � �
 � � � � � � � � � � . By contrast, arithmetic operators like �

and � associate to the left: � �
 � � � 	 means � � � �
 � � � � � 	 .

CIS 500, 3 September 47

Taking Lists Apart

OCaml provides two basic operations for extracting the parts of a list.

� � � � � � � (pronounced “head”) returns the first element of a list.

� � � � � � � � � �
 � � � � �

� � �
 � �

� � � � � � (pronounced “tail”) returns everything but the first element.

� � � � � � � � �
 � � � � �

� � �
 � � � � �
 � � �

CIS 500, 3 September 48

� � � � � � � � � � � � � � �
 � � � � � �

� � �
 � � � � � � �

� � � � � � � � � � � � � � � � � � � � �
 � � � � � � �

� � �
 � � � � � �

� � � � � � � � � � � � � � � � � � � � � �
 � � � � � � �

� � �
 � �

� � � � � � � � � � � 	 � � � � �
 � � � �

� � �
 � � � � � � � 	 �

� � � � � � � � � � � � � � � � � � 	 � � � � �
 � � � � �

� � �
 � �

� � � � � � � � � � � � � � � � � 	 � � � � �
 � � � � �

� � �
 � � � � � 	 �

CIS 500, 3 September 49

Modules – a brief digression

Like most programming languages, OCaml includes a mechanism for

grouping collections of definitions into modules.

For example, the built-in module � � � provides the � � � � � � and � � � � �

functions (and many others). That is, the name � � � � � � really means

“the function � � from the module � � � .”

CIS 500, 3 September 50

Recursion on lists

Lots of useful functions on lists can be written using recursion. Here’s

one that sums the elements of a list of numbers:

� � � � � � � � � � 	 � �� � �
 � � � � �

�
 � �

� � � �
 �

� � � � � � � � � � � � � � � � 	 � � � � � � � � � � �

� � � � � 	 � � � � 	 � � �
 � � � � �

� � �
 � � �

CIS 500, 3 September 51

Consing on the right

� � � � � � �
 � � �� � �
 � � � � � � � �
 � �

�
 � �

� � � �
 � � � � �

� � � � � � � � � � � � � �
 � � � � � � � � � � � � �

� � � �
 � � � �
 � � � � � �
 � � �
 � � � � 	
 	
 �

� �
 � � � � � 	 � � �
 � � � �

� � �
 � � � � � � � 	 � � �
 � � �

CIS 500, 3 September 52

Reversing a list

We can use �
 � � to reverse a list:

� � � � � � � � � �� � �
 � � � � � � � � � � � � � � � � � � �
 �

 � � � �
 � � � �

�
 � �

� � � �
 � �

� � � � �
 � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � �
 � � � � � �
 � � � � 	
 	
 �

� � � � � � �
 � � � � � 	 � � �

� � �
 � � � � � 	 � � � � �
 � � �

Why is this inefficient? How can we do better?

CIS 500, 3 September 53

A better � � �

� � � � � � � � � � � � � �
 � �
 � � � � � �
 � � � � � � � � � � � � � �

� � � � � � � � � 	 � �� � �
 � � � � � � � � � �
 � � � � �

�
 � �

� � � �
 � � �

� � � � � � � � 	 � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � 	 � � �
 � � � � � �
 � � � � � �
 � � � � 	
 	
 �

� � � � � 	 � � � �
 � � � � 	 � � � � � � �

� � �
 � � � � � � �
 � � � 	 � � � � �

� � � � � � �� � �
 � � � � � � � � � 	 � � � � � �

� � � � � � � �
 � � � � � �
 � � � � 	
 	
 �

CIS 500, 3 September 54

Tail recursion

The � � � � 	 � function

� � � � � � � � � 	 � �� � �
 � � � � � � � � � �
 � � � � �

�
 � �

� � � �
 � � �

� � � � � � � � 	 � � � � � � � � � � � � � � � � � � � � � � � � �

has an interesting property: the result of the recursive call to � � � � 	 � is

also the result of the whole function. I.e., the recursive call is the last

thing on its “control path” through the body of the function. (And the

other possible control path does not involve a recursive call.)

Such functions are said to be tail recursive.

CIS 500, 3 September 55

It is usually fairly easy to rewrite a recursive function in tail-recursive

style. For example, the usual factorial function is not tail recursive

(because one multiplication remains to be done after the recursive call

returns):

� � � � � �
 � � �
 � �
 � �

�

 � � � �
 �

� � � �
 �
 � � �
 � � � � �

We can transform it into a tail-recursive version by performing the

multiplication before the recursive call and passing along a separate

argument in which these multiplications “accumulate”:
� � � � � �
 � � � 	 � � � � � � �
 � �
 � �
 � �

�

 � � � �
 � � �

� � � �
 � � � 	 � � � � � �
 � �
 � � � � �

� � �
 � � �
 � �
 � �
 � � � 	 � �
 � �

CIS 500, 3 September 56

