
CIS 500

Software Foundations

Fall 2003

8 September

CIS 500, 8 September 1

Administrivia

Recitations start this week:

Wednesday, 3:30-5:00PM Levine 612 Advanced

Wednesday, 6:00-7:30PM Towne 309 Advanced

Thursday, 6:00-7:30PM Towne 309 Review

Thursday, 5:00-6:30PM Towne 305 Review

Thursday, 6:30-8:00PM Towne 305 Advanced

Thursday, 6:00-7:30PM Towne 303 Review

Friday, 9:00-10:30AM Moore 212 Review

Permanent assignments to recitations will be made next week. For this

week, attend any recitation you like.

CIS 500, 8 September 2

Study Groups

How many have already organized into study groups??

We will help organize study groups for the rest, beginning Wednesday.

CIS 500, 8 September 3

Homework 2

Homework 1 was due at noon today.

Homework 2 will be due next Monday at noon.

� Read Chapter 6 of Jason Hickey’s “Introduction to the Objective

Caml Programming Language” before starting

� Homework submission process is different this week!

CIS 500, 8 September 4

Questions from last time...

Are there any?

CIS 500, 8 September 5

Basic Pattern Matching

Recursive functions on lists tend to have a standard shape: we test

whether the list is empty, and if it is not we do something involving the

head element and the tail.

� � � � � � � � � � � � 	
 � � � �
 � � � � � �

�

� � � � � � � � �
 �

� � � � � � � � � � � � � � � � � � 	
 � � � � � � � � � � � �

OCaml provides a convenient pattern-matching construct that bundles

the emptiness test and the extraction of the head and tail into a single

syntactic form:

� � � � � � � � � � � � 	
 � � � �
 � � � � � �

�

 � � � � � � � � �

� �

� � �

� � � �

� � � � � � � � � 	
 � �

CIS 500, 8 September 6

Pattern matching can be used with types other than lists. For example,

here it is used on integers:

� � � � � � � � � � � �
 � �
 � �

�

 � � � �
 � � � �

�

� � �

� �

� �
 � � � � � �

�
� � � �

The � pattern here is a wildcard that matches any value.

CIS 500, 8 September 7

Complex Patterns

The basic elements (constants, variable binders, wildcards, � � , � � , etc.)
may be combined in arbitrarily complex ways in
 � � � � expressions:

� � � � � � � � � �

 � � � � � � � � �

� � � � � � �

� �

�
� � � � � � � �
 �
 � � � �
 �
�

� � � � � � � � � � � � � � � � � � �

� � � � � � � � �

�
� � �
�

� � � �

�
� � �
�

� �

� �

�
� 	

 �
�

� �

� � � � � � � � �
 � � � � �

� � � � � �
 �

� � � 	
 �

� � � � � � � � � � � � � �

� � � � � �
 �

� �
� � � � � � � �
 �
 � � � �
 �
�

� � � � � � � � � � � � � � � �

� � � � � �
 �

� �
� 	

 �
�

� � � � � � � � � � � � � � 	 � � �

� � � � � �
 �

� �
� � �
�

CIS 500, 8 September 8

Type Inference

One pleasant feature of OCaml is a powerful type inference mechanism

that allows the compiler to calculate the types of variables from the way

in which they are used.
� � � � � � � � � � �
 �

 � � � �
 � � � �

�

� � �

� �

� �
 � � � � � �

�
� � � �

� � � � � � � � �
 �

� � �
 � � � � 	
 �

The compiler can tell that � � � � takes an integer argument because
 is

used as an argument to the integer � and � functions.

CIS 500, 8 September 9

Similarly:

� � � � � � � � � � � � 	
 � �

 � � � � � � � � �

� �

� � �

� � � �

� � � � � � � � � 	
 � �

� � � � � � � � 	
 � �
 � � � � �

� � �
 � � � � 	
 �

CIS 500, 8 September 10

Polymorphism

Suppose we ask the OCaml system to infer the type of the following

very similar definition:
� � � � � � � � �
 � � � � �

 � � � � � � � � �

� �

� � �

� � � �

� � � � � �
 � � � � �

� � � � �
 � � � �

�

� � � � �

� � �
 � � � � 	
 �

The �

� here, pronounced “alpha,” is a type variable, standing for an

arbitrary type.

The inferred type tells us that the function can take a list with elements

of any type (i.e., a list with elements of type alpha, for any choice of

alpha).

We’ll have more to say about polymorphism later.

CIS 500, 8 September 11

Tuples

items connected by commas are “tuples”

�

�
� � �
�

� � � � �

� � � � � �
 �

� �
 � � �
� � �
�

� � �

� �
�

� � � � � � � � �
�

� �
�
� � �
�

� � � � � � �

� � � � � �
 �

� � � � � �
 �

� �
 � �

� �
� � � � � � � � �
�

� �
�
� � �
�

� � � �

� �
�
� � � � � � �

�

� �
�
� � �

�
�
�
� � �
�

�
�
� � � � �
�
� � � �

� � � � � �
 �

� � � � �
 � � � � � � �
� � � � � � �

�

� �
�
� � �

�
�

�
� � �
�

�

�
� � � � �
�
�

� � � � � � � � �

� � � � �

� � � � � �
 � � �
 �

� � �
 � � � � 	
 �

How many arguments does � take?

CIS 500, 8 September 12

Tuples are not lists

Please do not confuse them!

� � � � � 	 � � �

� �
� � �
�

�

�
� � �
�

�

�
� � � � �
�

� �

� � � � 	 � � � � � � � �
 �

� � � � �
 �

� � � � �
 �

� �
� � �
�

�

�
� � �
�

�

�
� � � � �
�

� � � � � � � � � �
�
� � �
�

�

�
� � �
�

�

�
� � � � �
�
� � �

� � � � � � � � � � � �
 � � � � � � �
�
� � �
�

�

�
� � �
�

�

�
� � � � �
�
�

� � � � � � � � � 	 � � � � �

� � � � � � � � � � � � �
 � � � � � � � � � �
 �

� � � � �
 �

� � � � �
 � � 	 � � � � � � � 	 � � �

� � � � � � �

�

� � � � �

� � � � � � � � � � � � � �

� � � � � �
 �

� �
� � �
�

� � � � � 	 � �

� � �

�
� � �
�

� �

� � � � 	 � � � �
 � � � � � �
 �

� � �

�
� � �
�

� � � � � � � � � �

�
� � �
�
� � �

� � � � � � � � � � � � �
 � � � � � � � � � �
 � � 	 � � � � � � � 	 � � � � � � � � � � �
 �

CIS 500, 8 September 13

Tuples and Pattern Matching

Tuples can be “deconstructed” by pattern matching:

� � � � � � � � � �
 �
 �
 � �

 � � � �
 �
 � � � � �

�
 � � � � � �

� �
 � � �

� � � � � � �
 � �
�
� � � � � �
�

�

�
� �
 � �
 �

�

�

�
� �

�
� � �

� � � � � �
 �

� �
� � � � � �
�

CIS 500, 8 September 14

Example: Finding words

Suppose we want to take a list of characters and return a list of lists of

characters, where each element of the final list is a “word” from the

original list.

� � � � � � �
�

�
�

�
�

�

�

�
�

�
�

�
� �

�
�

�

�

�
�

�
�

�
�

�

�

�
�

�

�

�
�

�

�
� �

�
�

�
�

�
�

�

�

�
�

�

�

� � �

� � � � � � � � � � � � � � �

� �
�

�
�

�

�

�

�

�

�

�
�

� � �
�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

� � �
�

�
�

�

�

�

�

�

�

�

�

� �

(Note that character constants are written with single quotes.)

CIS 500, 8 September 15

An implementation of � � � � �

� � � � � � � � � � � � � �

 � � � � � � � � �

� �

� � � � �

� �
� �

� � � � �

� � � � � � � � � � � � � � �

� � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � � � � � � � � � 	
 �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � 	
 �

Note the use of both tuple patterns and nested patterns (as well as

wildcards).

[N.b.: this version is cleaner than the one in the photocopied slides!]

CIS 500, 8 September 16

Aside: Local function definitions

The � � � � function is completely local to � � � � � : there is no reason for

anybody else to use it — or even, for anybody else to be able to see it!

It is good style in OCaml to write such definitions as local bindings:

� � � � � � � � � � �

� � � � � � � � � � � � �

 � � � � � � � � �

� �

� � � � �

� �
� �

� � � � �

� � � � � � � � � � � � � � �

� � � � � � � �

� � � � � � � � � � � � � � �

�

� � � � � � � � �

CIS 500, 8 September 17

In general, any let definition that can appear at the top level

� � � � � � � � �

� � � � �

can also appear in a � � � � � � �
 � � � form.

� � � � � � � �
 � � � �

CIS 500, 8 September 18

A Better Split

Our � � � � � function worked fine for the example we tried it on. But here

are some other tests:
� � � � � � �
�

�
�

�
� �

�
� �

�
�

�

�

� � �

� � � � � � � � � � � � � � � � �
�

�
�

� � � � � �
�

�

�

� �

� � � � � � �
�

�
�

�
� �

� � �

� � � � � � � � � � � � � � � � �
�

�
�

� � � � �

Could we refine � � � � � so that it would leave out these spurious empty

lists in the result?

CIS 500, 8 September 19

Sure. First rewrite the pattern match a little (without changing its

behavior):

� � � � � � � � � � �

� � � � � � � � � � � � �

 � � � � � � � � � � �

� � � �

� � � � �

� � � �
� �

� � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � � � � � � �

�

� � � � � � � � �

CIS 500, 8 September 20

Then add a couple of clauses:
� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � �

 � � � � � � � � � � �

� � � � �

� � � �

� � � � �

� � � � �

� � � � �
� �

� � � � �

� � � � � � � � � �

� � � �
� �

� � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � �

� � � � � � � � � � � � � �
�

�
�

�
�

�

�

�
� �

�
� �

�
�

�
�

�
� �

�
�

�
�

�
� �

� � �

� � � � � � � � � � � � � � � � �
�

�
�

�

�

�

�

� � �
�

�
�

� � �
�

�
�

� �

� � � � � � � � � � � � � �
�

�
�

�
� �

� � �

� � � � � � � � � � � � � � � � �
�

�
�

� �

� � � � � � � � � � � � � �
� �

�
� �

� � �

� � � � � � � � � � � � � � � � �

CIS 500, 8 September 21

Basic Exceptions

OCaml’s exception mechanism is roughly similar to that found in, for

example, Java.

We begin by defining an exception:

� � � � � � � � �
 � � � � �

Now, encountering � � � � � � � � will immediately terminate evaluation and

return control to the top level:

� � � � � � � � � � �
 �

� �
 � � � � �
 � � � � � � � �

� � � � � �
 � � � � �
 �

� � � �
 � � � � � �

�
� � � �

� � � � � �
�
� � � �

� � � � � � � �
 � � � � �

CIS 500, 8 September 22

Naturally, exceptions can also be caught within a program (using the

� � � � � � � � � � � � form), but let’s leave that for another day.

CIS 500, 8 September 23

Data Types

We have seen a number of data types:

�
 �

� � � �

� � � �
 �

� � � �

� � � � �

� 	 � � � �

Ocaml has a few other built-in data types — in particular, � � � � � , with

operations like � � , � � , etc.

One can also create completely new data types.

CIS 500, 8 September 24

The need for new types

The ability to construct new types is an essential part of most

programming languages.

Suppose we are building a (very simple) graphics program that displays

circles and squares. We can represent each of these with three real

numbers.

CIS 500, 8 September 25

A circle is represented by the co-ordinates of its center and its radius. A

square is represented by the co-ordinates of its bottom left corner and its

width. So we can represent both shapes as elements of the type:

� � � � � � � � � � � � � � � � �

However, there are two problems with using this type to represent circles

and squares. First, it is a bit long and unwieldy, both to write and to

read. Second, because their types are identical, there is nothing to

prevent us from mixing circles and squares. For example, if we write

� � � � � � � � � � � � 	 � � � � � � � � � �

� � � � � � �

we might accidentally apply the � � � � � � � � 	 � � � function to a circle and get

a nonsensical result.

(Recall that numerical operations on the � � � � � type are written

differently from the corresponding operations on �
 � — e.g., � � instead

of � . See the OCaml manual for more information.)

CIS 500, 8 September 26

Data Types

We can improve matters by defining � � 	 � � � as a new type:

� � � � � � 	 � � �

� � � 	 �

This does two things:

� It creates a new type called � � 	 � � � that is different from any other

type in the system.

� It creates a constructor called � � 	 � � � (with a capital �) that can be

used to create a � � 	 � � � from three floats. For example:

� � � 	 � � � � � � � � � � � � � � � � � �

� � � � 	 � � �

� � � 	 � � � � � � � � � � � � � � � �

CIS 500, 8 September 27

Taking data types apart

We take types apart with (surprise, surprise...) pattern matching.

� � � � � � � � � � � � 	 � � � � �

 � � � � � � � � �

� � 	 � � � � � � � � � �

� � � � � � � �

� � � � � � � � � � � 	 � � � � � � 	 � � �

� � � � � � � � � � 	
 �

� � � � � � � � �
 � � � � � � � � � � � �

 � � � � � � � � �

� � 	 � � � � � � � � �

� � � � � � � �

� � � � � � � �
 � � � � � � � � � � � � � 	 � � �

� � � � � � � � � � � � � � � � 	
 �

So we can use constructors like � � 	 � � � both as functions and as patterns.

Constructors are recognized by being capitalized (the first letter is upper

case).

CIS 500, 8 September 28

These functions can be written a little more concisely by combining the

pattern matching with the function header:
� � � � � � � � � � � � 	 � � � � � � 	 � � � � � � � � � � �

� � � � � � �

� � � � � � � � �
 � � � � � � � � � � � � � 	 � � � � � � � � � �

�

� � � � � �

CIS 500, 8 September 29

Continuing, we can define a data type for circles in the same way.
� � �

� �

� �

� � � � � � 	 � � � � � � � � �

� � � � � �
 � � � � � � � � � � � � � � � � � � � � � � �

�

� � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � 	 � � � �

We cannot now apply a function intended for type � � 	 � � � to a value of

type � � � � � � :

� � � � � � � � � 	 � � � � � � � �

� � � � � � � � � � � � �
 � � � � � � � � � � � � � 	 � � � � � � � 	 � � � � � � � � � � � � 	 � � � �

CIS 500, 8 September 30

Variant types

Going back to the idea of a graphics program, we obviously want to

have several shapes on the screen at once. For this we’d probably want

to keep a list of circles and squares, but such a list would be

heterogenous. How do we make such a list?

The solution is to build a type that can be either a circle or a square.

� � � � � � � � �

� �

� � � 	 �

Now both constructors � � � � � � and � � 	 � � � create values of type � � � � � .

For example:

� � � 	 � � � � � � � � � � � � � � � � � �

� � � � � � �

� � � 	 �

A type that can have more than one form is often called a variant type.

CIS 500, 8 September 31

We can also write functions that do the right thing on all forms of a

variant type. Again we use pattern matching:
� � � � � � � � � �

 � � � � � � � � �

� � � � � � � � � � � � �

� � � � � � � 	 � � � � � � �

� � � 	 � � � � � � � � � �

� � � � � � � �

� 	 � � � �

� � � � � � � � � � � � � 	 � � 	

CIS 500, 8 September 32

A “heterogeneous” list:

� 	 � � � � 	 � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � 	 � � � � � � � � � 	 � � � � � � � � � 	 � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � 	 � � 	

CIS 500, 8 September 33

Mixed-mode Arithmetic

Many programming languages (Lisp, Basic, Perl, database query
languages) use variant types internally to represent numbers that can be
either integers or floats. This amounts to “tagging” each numeric value
with an indicator that says what kind of number it is.

� � � �
 	
 � �
 � � � �
 � � � � � � � � � � � � � � � �

� � � � � � � � � � � �

 � � � � � � � � � � � � � � �

� �
 � � � � �
 � � � �

� � �
 � � � � � � � �

� � � � � � � � � � �
 � � � �

� � � � � � � � � � � � � � � � � � � �

� � �
 � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � �
 � � � � � � � � � � � 	 � � �

� �
 	
 � � � � � � � � 	

CIS 500, 8 September 34

Multiplication,
 	 � � follows exactly the same pattern:
� � � �
 	 � � � � � � �

 � � � � � � � � � � � � � � �

� �
 � � � � �
 � � � �

� � �
 � � � � � � � �

� � � � � � � � � � �
 � � � �

� � � � � � � � � � � � � � � � � � � �

� � �
 � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

CIS 500, 8 September 35

Some Higher-Level Mixed-Mode Functions

� � � � 	
 � � � �
 	 �
 �

 � � � �
 � � � � �
 � � � � �
 � �
� � � � � � � � � � � � � � � � � �
� � � � � �

� � � �
 �
 	 �
 �
 � � � � �
 � � 	
 � � � �
 	 �
 � � � �

� � � � � � � � � � �
 �

� �
 � �
 � � � � �
 �
 � �

� � � �
 	 � �
 � � � � � �
 �
 	 �
 � �
 � � � � � � �

� � � � � � �
 � � � � �

� �
 	
 � �
 � 	 � � �

CIS 500, 8 September 36

A Data Type for Optional Values

Suppose we are implementing a simple lookup function for a telephone

directory. We want to give it a string and get back a number (say an

integer). We expect to have a function � � � � 	 � whose type is
� � � � 	 � � � � � �
 �

� � � � � � � � � �

� � �
 �

where � � � � � � � � is a (yet to be decided) type that we’ll use to represent

the directory.

However, this isn’t quite enough. What happens if a given string isn’t in

the directory? What should � � � � 	 � return?

There are several ways to deal with this issue. One is to raise an

exception. Another is based on the following data type:

� � � �
 � � �

� � � � �
 � � � � � � �
 � � � �
 � � �

CIS 500, 8 September 37

To see how this type is used, let’s represent our directory as a list of

pairs:
� � � � � � � � � � � �

� � �
�
� � �
�

� � � � � � � �
�
� � � � � �
�

� 	 � � � � �

�
�
� �
 �
�

� � � 	 � � � �
�
� �
�

� � � � � � � � �

� � � � � � � � � � � 	 � � � �

 � � � � � � � � �

� �

� � � � � �
 �

� � � � � � � � �

� � � � � � � � � �
 � � � � �
 � � � �

� � � � � � � � 	 � � � � �

� � � � � 	 �

�
� �
 �
�

� � � � � � � � � �

� �
 � � �

� � � � � �
 � � � 	 �

� � � � � 	 �

�
� � � �

�

� � � � � � � � � �

� �
 � � �

� � � � �
 �

CIS 500, 8 September 38

Built-in options

Because options are often useful in functional programming, OCaml

provides a built-in type � � � � � �
 for each type � . Its constructors are

� �
 � (corresponding to � � � �
 �) and � �
 � (for � � � � �
 �).

� � � � � � � � � � � 	 � � � �

 � � � � � � � � �

� �

� � � �
 �

� � � � � � � � �

� � � � � � � � � �
 � �
 � � � �

� � � � � � � � 	 � � � � �

� � � � � 	 �

�
� �
 �
�

� � � � � � � � � �

� �
 � � �

� � �
 � � � 	 �

CIS 500, 8 September 39

Enumerations

Our
 � � � data type has one variant, � � � �
 � , that is a “constant”

constructor carrying no data values with it. Data types in which all the

variants are constants can actually be quite useful...

� � �
 � �

� � � �
 � � � � �

 � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � �

� � � � � �
 � �

� � � � � �

� � 	
 � � � � �
 � � � � 	 � � � � � � � �
 � � � �

� � � 	 � � � � � � � � � � � � � � 	 � � � � �

� � � � � � � � �
 � � �

 � � � � � � � � �

� � � 	 � � �

� � � � 	 �

� � 	
 � �

� � � � 	 �

� �

� � � � � � � � �

CIS 500, 8 September 40

A Boolean Data Type

A simple data type can be used to replace the built-in booleans.

We use the constant constructors � � 	 � and � � � � � to represent true and

false. We’ll use different names as needed to avoid confusion between

our booleans and the built-in ones:

� � � �
 � � � �

� � � � � � � � � 	 � � �

� � � �
 � � � � �
 � � � � � � � � � � � � � �

� � � � 	 � � � � 	 �

� � � � � � � � �

� � � �
 �
 � � � � � �

 � � � � � � � � � � � � � � �

� � � 	 � � � � 	 � �

� � � � 	 �

� � � � 	 � � � � � � � �

� � � � � � �

� � � � � � � � � � 	 � �

� � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � �

Note that the behavior of
 �
 � is not quite the same as the built-in � � !

CIS 500, 8 September 41

Recursive Types

Consider the tiny language of arithmetic expressions defined by the

following (BNF-like) grammar:

� � � � � �
 	
 � � �

� � � �

� � � � �

� � � �

�

� � � �

� � � �

� � � � �

(We’ll come back to these grammars in more detail next week...)

CIS 500, 8 September 42

We can translate this grammar directly into a datatype definition:

� � � � � � �

� � 	
 � � �
 �

� � � � 	 � � � � � � � � � �

� � � �
 	 � � � � � � � � � �

� � � �
 � � � � � � � � � � � � �

Notes:

� This datatype (like the original grammar) is recursive.

� The type � � � represents abstract syntax trees, which capture the

underlying tree structure of expressions, suppressing surface details

such as parentheses

CIS 500, 8 September 43

An evaluator for expressions

Goal: write an evaluator for these expressions.

� � � � � � � � � � �

� � �
 � � � � 	
 �

� � � � � � � � �
 � � � � � � 	 � � � � 	
 � � � � � 	
 � � � � � � � 	
 	 � � � �

� � �
 � � � � � �

CIS 500, 8 September 44

The solution uses a recursive function plus a pattern match.

� � � � � � � � � � � �

 � � � � � � � � �

� � 	
 � � � �

� � � � 	 � � � � � � � �

� � � � � � � � � � � � � � �

� � � �
 	 � � � � � � � �

� � � � � � � �

�

� � � � � �

� � � �
 � � � � � � � � �

� � � � � � � � � � � � � � � � �

CIS 500, 8 September 45

Review

Throughout the course, we will rely on standard (and hopefully familiar!)

concepts from compilers, e.g.:

� Lexing

� Parsing

CIS 500, 8 September 46

A final example

Goal: write a function that takes two lists of equal length and interleaves

their elements in alternating fashion:
� �
 � � � � � � � � � � � � � � � � � � 	 � � � � �

� � �
 � � � � � � � � � � � � � 	 � � � � �

CIS 500, 8 September 47

Solution:

� � � � � � � �
 � � � � � � � � � � � � �

 � � � � � � � � � � � � �

� � � � �

� � � �

� � � � � � � � � �

� � � � � � � � �
 � � � � � � � � � � � �

� �

� � � � � � � � � � � �

CIS 500, 8 September 48

Harder version

Now suppose that we want to calculate all the possible interleavings of

two lists — i.e., all the lists that can be formed by interleaving elements

of the input lists in an arbitrary fashion (but maintaining the ordering

from the original lists).

For example:

� �
 �

� � �
 � � � � � � � � � �

� �

� � � � � � � � � � � � � � � � � � � �

CIS 500, 8 September 49

� � � � � � � � �
 � � � � � � � �

 � � � � � � � � �

� �

� � � �

� � � � �

� � � � � � � � � � � � �
 � � � � � � � � � �

� � � � �
 � � � � � �

�

�

� � �

� � � � � � � � �

� � �

� � � � � � � � � � � � 	
 �

� � � � � � � �
 � � � � � � � � � � � � �

 � � � � � � � � � � � � �

� � � �

� � � � � �

� � � � �

� � � � � �

� � � � � � � � � �

� �

� � � � � � � � �
 �

� � �
 � � � � � � � �
 � � � � � � � � � � � � � �

� � �
 � � � � � � �
 � � � � � � � � � � � � � � �

� � � �
 � � � � � � � � �

�

� � � � �

� � �

� � � � �

� � �

� � � � � � � � � � � � 	
 �

CIS 500, 8 September 50

