
CIS 500

Software Foundations

Fall 2003

8 September (continued)

CIS 500, 8 September (continued) 1



Polymorphism

This version of � � � � is said to be polymorphic, because it can be applied
to many different types of arguments. (“Poly” = many, “morph” = shape.)

Note that the type of the elements of � is �
� (pronounced “alpha”). This

is a type variable, which can instantiated, each time we apply � � � � , by
replacing �

� with any type that we like. The instances of the type

�
� � � � �

� � �
� include

� � � � � � �

� � � � �

� � 	 � � 
 � � � �

� � � � 	 � � 


� � � � � � � � � � �

� � � � � � � � �

� � � 


In other words,

� � � � �

�
� � � � �

� � �
�

can be read, “ � � � � is a function that takes a list of elements of any type
alpha and returns an element of alpha.”

CIS 500, 8 September (continued) 2



A polymorphic � � � � � �

� � � � 	 � � � � � � � � � � 	 �

�
� � � � � 
 � � � �

�
� � � � � 
 �

� 
 � 	 � � � � � � � � �

� � � � � � � � 
 � � � 	 � � � � � � � � � � � � � 
 � � � 	 
 � � � �

� � � � � � � � � �

�
� � � � �

� �

�
� � � � �

� �

�
� � � � � � � 
 � � �

� � � � � � � � � � � � � � � � � � � � � � �

�

� � � � � � � � � � � � � � � � � � � � � �

� � � � � � � �
�
� � �
�

�

�
� �
�
� �
�
� � �
�

�

� � � �
�
� � �

�

� � � 	 � � 
 � � � � � �
�
� � �
�

�

�
� �
�

�

�
� � �
�

�

� � � �
�
�

CIS 500, 8 September (continued) 3



A polymorphic � � �

� � � � 	 � � 	 � � � � � � � �

�
� � � � � 
 � 	 � � �

�
� � � � � 
 �

� 
 � � � � � � � � 	 � �

� � � � 	 � � � � � � � � � � 
 � � � 
 � � � � � 
 � � � � � 	 � � 
 � �

� � � 	 � � � � � �

�
� � � � �

� �

�
� � � � �

� �

�
� � � � � � � 
 � � �

� � � � 	 � � � � �

�
� � � � � 
 � 	 � � � � � � � � � �

� � � 	 � � �

�
� � � � �

� � �
� � � � � � � 
 � � �

� 	 � � �
�
� � �
�

�

�
� �

�
�

�
� � �
�

�

� � � �
�
� � �

�

� � � 	 � � 
 � � � � � �
� � � �
�

�

�
� � �
�

�

�
� �
�

�

�
� � �
�
�

� 	 � � � 
 � � � � � � 	 � � � � �

�

� � � � � � � � � � � � 	 � � � 
 � � � � �

CIS 500, 8 September (continued) 4



Polymorphic � � � � � �

� � � � 	 � � 	 � � � � � � � �
�
� 
 � � � � � � 
 � � � � � � � � � 
 � � � � � � � � 
 � � 


� 
 � � � � � � � � �

� � � � � � � 	 � � � � � � � �
� 	 
 � �

� 	 � � � � � � 	 � � �

�

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� 	 � � � � � � 	 � � � � �

�

� � � � � � � � � � � � 	 � � � � 	 � � � � 	 � � �

� 	 � � � � � � � � � � � � �

�

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
What is the type of 	 � � � � � ?

CIS 500, 8 September (continued) 5



Palindromes

A palindrome is a word, sentence, or other sequence that reads the same
forwards and backwards.

� � � � � � � � � � 	 � � � � � �

�
� � � � � 
 �

� � � 	 � � � 
 � �

� � � � � � � � � 	 � � � �

�
� � � � �

� � � � � � � � 
 � � �

� � � � � � � 	 � � � � 	 � � � � � � � 	 � � �

�

� � � � � � � 	 � �

� � � � � � � 	 � � � � � 	 � � � � 	 � � � 
 � � � � � � �

�

� � � � � � 
 � � � �

� � � � � � � 	 � � � �
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�

�
�
�

�
�
�
�

�
�
�
�

�

�
�
�

�

�
�
�

�
�
	
�

�
�
�
�

�

�
�
�

�

�
�
�

�
�
�
�

�
�
�
�

�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
� � �

�

� � � � � � � 	 � �

CIS 500, 8 September (continued) 6



map: “apply-to-each”

OCaml has a predefined function � � � � 
 � � � that takes a function 
 and a

list � and produces another list by applying 
 to each element of � . We’ll

soon see how to define � � � � 
 � � � , but first let’s look at some examples.

� � � � � 
 � � � � � � � 	 � � 	 � � � � � � � � � � 	 � � �

�

� � � � � � � � � � 	 � � � � � � � 	 � � � � � 	 �

� � � � � 
 � � � � � � � 
 � � � � � 
 � � � � � � 	 � � � � �

�

� � � � � � � � � � � � 	 � � � � 	 � � � 
 � � � � �

Note that � � � � 
 � � � is polymorphic: it works for lists of integers, strings,

booleans, etc.

CIS 500, 8 September (continued) 7



More on map

An interesting feature of � � � � 
 � � � is its first argument is itself a function.

For this reason, we call � � � � 
 � � � a higher-order function.

Natural uses for higher-order functions arise frequently in programming.

One of OCaml’s strengths is that it makes higher-order functions very

easy to work with.

In other languages such as Java, higher-order functions can be (and

often are) simulated using objects.

CIS 500, 8 September (continued) 8



filter

Another useful higher-order function is � � � � 
 
 � � � � 	 . When applied to a
list � and a boolean function � , it extracts from � the list of those
elements for which � returns � 	 � � .

� � � � 	 � � � � � � � � � � � � 
 �

� 
 � � � � � � � � 	 � �

� � � � � 
 � � 	 � � � � 
 � � � �

� � � � � 
 � � � � � � � � � � � �
�
� 


� � � � � � � � � �
� � 
 � �

� � � � � � � � � � �

� � � � � � � � 
 � � �

� � � � � 
 
 � � � � 	 � � � � � 	 � � � � � � � � � � � � � � � � � � �

�

� � � � � � � � � � � � � � � � � �

� � � � � 
 
 � � � � 	 � � � � � � 	 � � � � � 	 � � � 	 � � � � � � � 	 � � � 	 � � � � � � �

�

� � � � � � � � � � � � � � � 	 � � � 	 � � � 	 � � � � �

CIS 500, 8 September (continued) 9



Note that, like map, � � � � 
 
 � � � � 	 is polymorphic—it works on lists of any

type.

CIS 500, 8 September (continued) 10



Defining � � �

� � � � 
 � � � comes predefined in the OCaml system, but there is nothing

magic about it—we can easily define our own � � � function with the same

behavior.

� � � 	 � � � � � � 
 �

�
�
� �

�
� 
 � � �

�
� � � � � 
 �

� 
 � � � � � � � � � �

� � � � 
 � � � � � 
 � � � 
 � � � � � 
 � � � � � 
 � � � 


� � � � � � � �
�
�

� � � � 


� � �
� � � � �

� � � � � � � � � � 
 � � �

The type of � � � is probably even more polymorphic than you expected!

The list that it returns can actually be of a different type from its

argument:

� � � � � � 	 � � 
 
 � � � 
 � � �
� � � � � �

�
� � � � �
�

�

�
� 	 � � �
�

�

� 
 � �
�
� � �

�

� � � � � � � � � � � � � � � � � �

CIS 500, 8 September (continued) 11



Defining � � � � � �

Similarly, we can define our own 
 � � � � 	 that behaves the same as

� � � � 
 
 � � � � 	 .

� � � 	 � � 
 � � � � 	 � � �

�
�
� � � � � � 
 � � �

�
� � � � � 
 �

� 
 � � � � � � � � � �

� � � � � 
 � � � � � � 
 � � � 
 � � � � � � � � 
 � � � � � 
 � � � � 	 � � � � � � 
 � � � 


� � � � 
 � � � � 	 � � � � � � 
 � � � 


� � � 
 � � � � 	 � �
�
�

� � � � � � 


� � �
� � � � �

� � �
� � � � � � � 
 � � �

CIS 500, 8 September (continued) 12



Approaches to Typing

� A strongly typed language prevents programs from accessing private

data, corrupting memory, crashing the machine, etc.

� A weakly typed language does not.

� A statically typed language performs type-consistency checks at

when programs are first entered.

� A dynamically typed language delays these checks until programs are

executed.

Weak Strong

Dynamic PERL Lisp, Scheme

Static C, C++ ML, ADA, Java�

� Strictly speaking, Java should be called “mostly static”

CIS 500, 8 September (continued) 13



Practice with Types

What are the types of the following functions?

� � � � 
 � � � � � � 
 � � � 	

� � � � 
 � � � � 	

� � � � 
 � � � � � � 
 � � � �

� � � � 
 � � � � �

� � � � 
 � � �

� � � � 
 � � � � � � � � 
 � � � 	 
 � �

� � � � 
 � � � � � � � � 
 � � � �

� � � � 
 � � 	 � � �

� � � � 
 � �

� � � � �

CIS 500, 8 September (continued) 14



� � � � 
 � �

� � � � � �

� � � � 
 � � � � �

� � � � 
 � � � � � �

� � � � 
 � � � � � 
 � � � � � � � � � � � � �

� � � � 
 � � � � � 
 � � � � � � � � � � � � � � �

And one more:

� � � 	 � � 
 � �

� 
 � � � � 
 � � � � � � � �

� � � � 
 � � � � 


CIS 500, 8 September (continued) 15



Aside: Polymorphism

The polymorphism in ML that arises from type parameters is an example

of generic programming. (� � � � , 
 � � � � 	 , etc.) Are good examples of
generic functions.

Different languages support generic programming in different ways...

� parametric polymorphism allows functions to work uniformly over

arguments of different types.E.g., � � � � �

�
� � � � �

� � �
�

� ad hoc polymporphism (or overloading) allows an operation to behave

in different ways when applied to arguments of different types. There

is no such polymorphism in OCaml, but most languages allow some
overloading (e.g. � � � and � 
 � � � 
 � ). Java and C++ allow one to

extend the overloading of a symbol (e.g. �
� � 

�

�

� � � � � �
� ). This form

of overloading is a syntactic convenience, but little more.

� subtype polymporphism allows operations to be defined for collections
of types sharing some common structure

CIS 500, 8 September (continued) 16



e.g., a 
 � � � operation might make sense for values of � � � � � � and all

its “refinements”— � � � , � � 
 � 	 , � � � � � , etc.

CIS 500, 8 September (continued) 17



OCaml supports parametric polymorphism in a very general way, and

also supports subtyping (Though we shall not get to see this aspect of

OCaml, its support for subtyping is what distinguishes it from other

dialects of ML.) It does not allow overloading.

Java provides a subtyping as well as moderately powerful overloading,

but no parametric polymorphism. (Various Java extensions with

parametric polymorphism are under discussion.)

Confusingly, the bare term “polymorphism” is used to refer to parametric

polymorphism in the ML community and for subtype polymorphism in

the Java community!

CIS 500, 8 September (continued) 18


