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Study Groups

[Send mail to cis500 if you want us to help you get
into one.]
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[ Plans: one more lecture on ML, then on to TAPL.

We’ll be talking today about programming with
functions as data.

In a sense, this is what the whole course is about —
functions [programs] as objects of study in their own
right.]
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Multi-parameter functions

We have seen two ways of writing functions with multiple parameters:
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The first takes its two arguments separately; the second takes a tuple

and uses a pattern to extract its first and second components.
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The syntax for applying these two forms of function to their arguments

differs correspondingly:
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Partial Application

One advantage of the first form of multiple-argument function is that

such functions may be partially applied.
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Currying

Obviously, these two forms are closely related — given one, we can easily

define the other.
� � � � � � �

�

� �

� � � � � � � � � 
 


� � � � � �

�

 � � �

� � � � �

� � � � � � � � � � �

� � � � � � �

�

� � � � �

� � � � � � 
 


� � � � � �

�

 � � � � � � �

� � � � � � � � � � �

CIS 500, 10 September 7



Currying

Indeed, these transformations can themselves be expressed as

(higher-order) functions:
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A Closer Look

The type � � �

� � � � �

� � � � � can equivalently be written
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� � � � � � .

That is, a function of type � � �

� � � � �

� � � � � is actually a function that,

when applied to an integer, yields a function that, when applied to an

integer, yields an integer.

Similarly, an application like � � � � � is actually shorthand for � � � � � � � .

Formally: � � is right-associative and application is left-associative.
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Anonymous Functions

It is fairly common in OCaml that we need to define a function and use it

just once.
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To save making up names for such functions, OCaml offers a mechanism

for writing them in-line:
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Anonymous Functions

The following let-bindings are completely equivalent:
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Anonymous Functions

We can even write:
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First-class functions

Functions in OCaml are first class — they have the same rights and

privileges as values of any other types. E.g., they can be

� passed as arguments to other functions

� returned as results from other functions

� stored in data structures such as tuples and lists

� etc.

E.g...
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Quick Check

What is the type of � ?
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A list of functions
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[ supplement with fold (and show how to write the rest
using fold – note, for later, that fold is a kind of
universal iterator for lists)

write length in terms of map and fold

write factorial in terms of fold

write forall and exists, straight and in terms of map
and fold ]
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[Lazy streams – infinite-length lists of numbers

infinitely ascending sequence

sieve of E.

One more nice stream example (e.g., from Bird and
Wadler, or Thompson, or something)

efficiency: memoization (data structures with a purely
functional interface but stateful guts ]
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[ maybe: the compose function ]
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