
CIS 500

Software Foundations

Fall 2003

15 September

CIS 500, 15 September 1

Administrivia

� If you still want to join a study group, send mail to � � � � � � � � � � � . We

currently have one pending request.

� Sign-up sheets for recitations are being passed around the room.

Please write down your name and recitation preferences. We will

announce assignments as soon as possible.

� HW3 is available now; due next Monday.

	 Can be handed in either physically or electronically

	 If you foresee a lot of technical writing in your future, you should

consider learning how to use Latex now.

	 Please look at (at least) the first two problems from HW3 before

coming to this week’s recitation.

CIS 500, 15 September 2

Where we’re going

CIS 500, 15 September 3

Going Meta...

The functional programming style used in OCaml is based on treating

programs as data — i.e., on writing functions that manipulate other

functions as their inputs and outputs.

CIS 500, 15 September 4

Going Meta...

The functional programming style used in OCaml is based on treating

programs as data — i.e., on writing functions that manipulate other

functions as their inputs and outputs.

Everything in this course is based on treating programs as mathematical

objects — i.e., we will be building mathematical theories whose basic

objects of study are programs (and whole programming languages).

CIS 500, 15 September 4-a

Going Meta...

The functional programming style used in OCaml is based on treating

programs as data — i.e., on writing functions that manipulate other

functions as their inputs and outputs.

Everything in this course is based on treating programs as mathematical

objects — i.e., we will be building mathematical theories whose basic

objects of study are programs (and whole programming languages).

Jargon: We will be studying the metatheory of programming languages.

CIS 500, 15 September 4-b

Warning!

The material in the next couple of lectures is more slippery than it may

first appear.

“I believe it when I hear it” is not a sufficient test of understanding.

A much better test is “I can explain it so that someone else believes it.”

CIS 500, 15 September 5

Basics of Induction

(Review)

CIS 500, 15 September 6

Induction

Principle of ordinary induction on natural numbers

Suppose that � is a predicate on the natural numbers. Then:
If � � � �

and, for all � , � � � � implies � � � � � � ,

then � � � � holds for all � .

CIS 500, 15 September 7

Example

Theorem: � 	 � �
 � � � � � � � � � �
 � � , for every � .

Proof:

� Let � � � � be “ �
	
� �

� � � � � �
� �
� �
 � � .”

� Show � � � � :

�
	 � �

 � �

� Show that � � � � implies � � � � � � :

�
	
� �

� � � � � �
� �
 � �
	
� �

� � � � � �
�
� � �
� �

 � �
� �
 � � � � �
� �
 by IH

 � � � �
� �

�
� �

 �
� � � � �

� The result (� � � � for all �) follows by the principle of induction.

CIS 500, 15 September 8

Shorthand form

Theorem: � 	 � �
 � � � � � � � � � �
 � � , for every � .

Proof: By induction on � .

� Base case (� �):

�
	 � �

 � �

� Inductive case (� � � �):

�
	
� �

� � � � � �
� �
 � �
	
� �

� � � � � �
�
� � �
� �

 � �
� �
 � � � � �
� �
 IH

 � � � �
� �

�
� �

 �
� � � � �

CIS 500, 15 September 9

Complete Induction

Principle of complete induction on natural numbers

Suppose that � is a predicate on the natural numbers. Then:
If, for each natural number � ,

given � � � � for all � � �

we can show � � � � ,

then � � � � holds for all � .

CIS 500, 15 September 10

Ordinary and complete induction are interderivable — assuming one, we

can prove the other.

Thus, the choice of which to use for a particular proof is purely a

question of style.

We’ll see some other (equivalent) styles as we go along.

CIS 500, 15 September 11

Syntax

CIS 500, 15 September 12

Simple Arithmetic Expressions

Here is a BNF grammar for a very simple language of arithmetic

expressions:

� ::= terms

� � � � constant true

� � � � � constant false

� � � � � � � � � � � � � conditional

� constant zero

� � � � � successor

� � � � � predecessor

� � 	 � �
 � zero test

Terminology:

� � here is a metavariable

CIS 500, 15 September 13

Abstract vs. concrete syntax

Q1: Does this grammar define a set of character strings, a set of token

lists, or a set of abstract syntax trees?

CIS 500, 15 September 14

Abstract vs. concrete syntax

Q1: Does this grammar define a set of character strings, a set of token

lists, or a set of abstract syntax trees?

A: In a sense, all three. But we are primarily interested, here, in abstract

syntax trees.

For this reason, grammars like the one on the previous slide are

sometimes called abstract grammars. An abstract grammar defines a set

of abstract syntax trees and suggests a mapping from character strings

to trees.

We then write terms as linear character strings rather than trees simply

for convenience. If there is any potential confusion about what tree is

intended, we use parentheses to disambiguate.

CIS 500, 15 September 14-a

Q: So, are

� � � � �

� � � � � � �

� �

“the same term”?

What about

� � � � �

� � � � � � � � � � � � � � � � �

?

CIS 500, 15 September 15

A more explicit form of the definition

The set � of terms is the smallest set such that

1. � � � � � � � � � � � � � � � � ;

2. if �
 � � , then � � � � � �
 � � � � � �
 � � � 	 � �
 �
 � � � ;

3. if �
 � � , � � � � , and � � � � , then � � �
 � � � � � � � � � � � � � � .

CIS 500, 15 September 16

Inference rules

An alternate notation for the same definition:

� � � � � � � � � � � � � � � �

�
 � �

� � � � �
 � �

�
 � �

� � � � �
 � �

�
 � �

� � 	 � �
 �
 � �

�
 � � � 	 � � �
 � �

� � �
 � � � � � � � � � � � � � �

Note that “the smallest set closed under...” is implied (but often not stated
explicitly).

Terminology:

� axiom vs. rule

� concrete rule vs. rule scheme

CIS 500, 15 September 17

Terms, concretely

Define an infinite sequence of sets, � 	 , �
 , � � , . . . , as follows:

� � �

� � � � � � � � � � � � � � � � � �

� � � � � � �
 � � � � � �
 � � � 	 � �
 �
 � �
 � � � �

� � � � �
 � � � � � � � � � � � � � �
 � � � � � � � � � �

Now let

�

�
�
� �

CIS 500, 15 September 18

Comparing the definitions

We have seen two different presentations of terms:

1. as the smallest set that is closed under certain rules (�)

� explicit inductive definition

� BNF shorthand

� inference rule shorthand

2. as the limit (�) of a series of sets (of larger and larger terms)

CIS 500, 15 September 19

Comparing the definitions

We have seen two different presentations of terms:

1. as the smallest set that is closed under certain rules (�)

� explicit inductive definition

� BNF shorthand

� inference rule shorthand

2. as the limit (�) of a series of sets (of larger and larger terms)

What does it mean to assert that “these presentations are equivalent”?

CIS 500, 15 September 19-a

Induction on Syntax

CIS 500, 15 September 20

Why two definitions?

The two ways of defining the set of terms are both useful:

1. the definition of terms as the smallest set with a certain closure

property is compact and easy to read

2. the definition of the set of terms as the limit of a sequence gives us

an induction principle for proving things about terms...

CIS 500, 15 September 21

Induction on Terms

Definition: The depth of a term � is the smallest � such that � � � � .

From the definition of � , it is clear that, if a term � is in � � , then all of

its immediate subterms must be in � � � � , i.e., they must have strictly

smaller depths.

This observation justifies the principle of induction on terms.

Let � be a predicate on terms.

If, for each term � ,

given � � � � for all immediate subterms � of �

we can show � � � � ,

then � � � � holds for all � .

CIS 500, 15 September 22

Inductive Function Definitions

The set of constants appearing in a term � , written Consts � � � , is defined

as follows:

Consts � � � � � � � � � � � �

Consts � � � � � � � � � � � � � �

Consts � � � � � �

Consts � � � � � �
 � Consts � �
 �

Consts � � � � � �
 � Consts � �
 �

Consts � � � 	 � �
 �
 � Consts � �
 �

Consts � � � �
 � � � � � � � � � � � � � Consts � �
 � � Consts � � � � � Consts � � � �

Simple, right?

CIS 500, 15 September 23

First question:

Normally, a “definition” just assigns a convenient name to a

previously-known thing. But here, the “thing” on the right-hand side

involves the very name that we are “defining”!

So in what sense is this a definition??

CIS 500, 15 September 24

Second question: Suppose we had written this instead...

The set of constants appearing in a term � , written BadConsts � � � , is
defined as follows:

BadConsts � � � � � � � � � � � �

BadConsts � � � � � � � � � � � � � �

BadConsts � � � � � �

BadConsts � � � � �
BadConsts � � � � � �
 � BadConsts � �
 �

BadConsts � � � � � �
 � BadConsts � �
 �

BadConsts � � � 	 � �
 �
 � BadConsts � � � 	 � �
 � � � 	 � �
 �
 � �

What is the essential difference between these two definitions? How do
we tell the difference between well-formed inductive definitions and
ill-formed ones?

What, exactly, does a well-formed inductive definition mean?

CIS 500, 15 September 25

First, recall that a function can be viewed as a two-place relation (called

the “graph” of the function) with certain properties:

� It is total: every element of its domain occurs at least once in its

graph

� It is deterministic: every element of its domain occurs at most once in

its graph.

CIS 500, 15 September 26

We have seen how to define relations inductively. E.g....

Let Consts be the smallest two-place relation closed under the following
rules:

� � � � � � � � � � � � � � Consts

� � � � � � � � � � � � � � � � Consts

� � � � � � � � Consts

� �
 � � � � Consts

� � � � � �
 � � � � Consts

� �
 � � � � Consts

� � � � � �
 � � � � Consts

� �
 � � � � Consts

� � � 	 � �
 �
 � � � � Consts

� �
 � �
 � � Consts � � � � � � � � Consts � � � � � � � � Consts

� � � �
 � � � � � � � � � � � � � � Consts � �
 � � Consts � � � � � Consts � � � � � � � Consts

CIS 500, 15 September 27

This definition certainly defines a relation (i.e., the smallest one with a

certain closure property).

Q: How can we be sure that this relation is a function?

CIS 500, 15 September 28

This definition certainly defines a relation (i.e., the smallest one with a

certain closure property).

Q: How can we be sure that this relation is a function?

A: Prove it!

CIS 500, 15 September 28-a

Theorem: The relation Consts defined by the inference rules a couple of

slides ago is total and deterministic.

I.e., for each term � there is exactly one set of terms � such that

� � � � � � Consts.

Proof:

CIS 500, 15 September 29

Theorem: The relation Consts defined by the inference rules a couple of

slides ago is total and deterministic.

I.e., for each term � there is exactly one set of terms � such that

� � � � � � Consts.

Proof: By induction on � .

CIS 500, 15 September 29-a

Theorem: The relation Consts defined by the inference rules a couple of

slides ago is total and deterministic.

I.e., for each term � there is exactly one set of terms � such that

� � � � � � Consts.

Proof: By induction on � .

To apply the induction principle for terms, we must show, for an arbitrary

term � , that if

for each immediate subterm � of � , there is exactly one set of terms

� � such that � � � � � � � Consts

then

there is exactly one set of terms � such that � � � � � � Consts.

CIS 500, 15 September 29-b

Proceed by cases on the form of � .

� If � is � , � � � � , or � � � � � , then we can immediately see from the

definition of Consts that there is exactly one set of terms � (namely

� � �) such that � � � � � � Consts.

CIS 500, 15 September 30

Proceed by cases on the form of � .

� If � is � , � � � � , or � � � � � , then we can immediately see from the

definition of Consts that there is exactly one set of terms � (namely

� � �) such that � � � � � � Consts.

� If � is � � � � �
 , then the induction hypothesis tells us that there is

exactly one set of terms �
 such that � �
 � �
 � � Consts. But then it

is clear from the definition of Consts that there is exactly one set �

(namely �
) such that � � � � � � Consts.

CIS 500, 15 September 30-a

Proceed by cases on the form of � .

� If � is � , � � � � , or � � � � � , then we can immediately see from the

definition of Consts that there is exactly one set of terms � (namely

� � �) such that � � � � � � Consts.

� If � is � � � � �
 , then the induction hypothesis tells us that there is

exactly one set of terms �
 such that � �
 � �
 � � Consts. But then it

is clear from the definition of Consts that there is exactly one set �

(namely �
) such that � � � � � � Consts.

Similarly when � is � � � � �
 or � � 	 � �
 �
 .

CIS 500, 15 September 30-b

� If � is � � �
 � � � � � � � � � � � � , then the induction hypothesis tells us

	 there is exactly one set of terms �
 such that � �
 � �
 � � Consts

	 there is exactly one set of terms � � such that � � � � � � � � Consts

	 there is exactly one set of terms � � such that � � � � � � � � Consts

But then it is clear from the definition of Consts that there is exactly

one set � (namely �
 � � � � � �) such that � � � � � � Consts.

CIS 500, 15 September 31

How about the bad definition?

� � � � � � � � � � � � � � BadConsts

� � � � � � � � � � � � � � � � BadConsts

� � � � � � � � BadConsts

� � � � � � � BadConsts
� �
 � � � � BadConsts

� � � � � �
 � � � � BadConsts

� �
 � � � � BadConsts

� � � � � �
 � � � � BadConsts

� � � 	 � �
 � � � 	 � �
 �
 � � � � � BadConsts

� � � 	 � �
 �
 � � � � BadConsts

CIS 500, 15 September 32

This set of rules defines a perfectly good relation — it’s just that this

relation does not happen to be a function!

Just for fun, let’s calculate some cases of this relation...

� For what values of � do we have � � � � � � � � � � Consts?

� For what values of � do we have � � � � � � � � � � Consts?

� For what values of � do we have

� Consts?

� For what values of � do we have � � � 	 � �
 � � � � � Consts?

CIS 500, 15 September 33

Another Inductive Definition

size � � � � � � �

size � � � � � � � �

size � � � �

size � � � � � �
 � size � �
 � � �

size � � � � � �
 � size � �
 � � �

size � � � 	 � �
 �
 � size � �
 � � �

size � � � �
 � � � � � � � � � � � � � size � �
 � � size � � � � � size � � � � � �

CIS 500, 15 September 34

Another proof by induction

Theorem: The number of distinct constants in a term is at most the size

of the term. I.e., �Consts � � � � � size � � � .

Proof:

CIS 500, 15 September 35

Another proof by induction

Theorem: The number of distinct constants in a term is at most the size

of the term. I.e., �Consts � � � � � size � � � .

Proof: By induction on � .

CIS 500, 15 September 35-a

Another proof by induction

Theorem: The number of distinct constants in a term is at most the size

of the term. I.e., �Consts � � � � � size � � � .

Proof: By induction on � .

Assuming the desired property for immediate subterms of � , we must

prove it for � itself.

CIS 500, 15 September 35-b

Another proof by induction

Theorem: The number of distinct constants in a term is at most the size

of the term. I.e., �Consts � � � � � size � � � .

Proof: By induction on � .

Assuming the desired property for immediate subterms of � , we must

prove it for � itself.

There are three cases to consider:

Case: � is a constant

Immediate: �Consts � � � � � � � � � � size � � � .

CIS 500, 15 September 35-c

Another proof by induction

Theorem: The number of distinct constants in a term is at most the size

of the term. I.e., �Consts � � � � � size � � � .

Proof: By induction on � .

Assuming the desired property for immediate subterms of � , we must

prove it for � itself.

There are three cases to consider:

Case: � is a constant

Immediate: �Consts � � � � � � � � � � size � � � .

Case: � � � � � �
 , � � � � �
 , or � � 	 � �
 �

By the induction hypothesis, �Consts � �
 � � � size � �
 � . We now calculate as

follows: �Consts � � � � �Consts � �
 � � � size � �
 � � size � � � .

CIS 500, 15 September 35-d

Case: � � � �
 � � � � � � � � � � � �

By the induction hypothesis, �Consts � �
 � � � size � �
 � ,

�Consts � � � � � � size � � � � , and �Consts � � � � � � size � � � � . We now calculate as

follows:

�Consts � � � � �Consts � �
 � � Consts � � � � � Consts � � � � �

� �Consts � �
 � � � �Consts � � � � � � �Consts � � � � �

� size � �
 � � size � � � � � size � � � �

� size � � � �

CIS 500, 15 September 36

Operational Semantics

CIS 500, 15 September 37

Abstract Machines

An abstract machine consists of:

� a set of states

� a transition relation on states, written � �

A state records all the information in the machine at a given moment.
For example, an abstract-machine-style description of a conventional
microprocessor would include the program counter, the contents of the
registers, the contents of main memory, and the machine code program
being executed.

For the very simple languages we are considering at the moment,
however, the term being evaluated is the whole state of the abstract
machine.

Nb. Often, the transition relation is actually a partial function: i.e., from a
given state, there is at most one possible next state. But in general there
may be many.

CIS 500, 15 September 38

Operational semantics for Booleans

Syntax of terms and values

� ::= terms

� � � � constant true

� � � � � constant false

� � � � � � � � � � � � � conditional

� ::= values

� � � � true value

� � � � � false value

CIS 500, 15 September 39

The evaluation relation � � � � � is the smallest relation closed under the
following rules:

� (E-IFTRUE)

� (E-IFFALSE)

�
 � � � �

� � �
 � � � � � � � � � � � � � � � � � �
 � � � � � � � � � � � �

(E-IF)

CIS 500, 15 September 40

Terminology

Computation rules:

� (E-IFTRUE)

� (E-IFFALSE)

Congruence rule:

�
 � � � �

� � �
 � � � � � � � � � � � � � � � � � �
 � � � � � � � � � � � �

(E-IF)

Computation rules perform “real” computation steps.

Congruence rules determine where computation rules can be applied
next.

CIS 500, 15 September 41

Evaluation, more explicitly

� � is the smallest two-place relation closed under the following rules:

� �

� �

� �
 � �
�

 � � � �

� � � � �
 � � � � � � � � � � � � � � � � � �
�

 � � � � � � � � � � � � � � � � �

CIS 500, 15 September 42

