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Administrivia

� Reading for (before!) next week’s lectures: TAPL Chapter 5
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Review (and a few more details)
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Simple Arithmetic Expressions

The set � of terms is defined by the following abstract grammar:

� ::= terms

� � � � constant true

� � � 	 � constant false

 � � � � � � � � � 	 � � conditional


 constant zero

	 � � � � successor

� � � � � predecessor


 	 � � � � � zero test
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Inference Rule Notation

More explicitly: The set � is the smallest set closed under the following

rules.

� � � � � � � � � 	 � � � 
 � �

� � � �

	 � � � � � � �

� � � �

� � � � � � � �

� � � �


 	 � � � � � � � �

� � � � � � � � � � � �


 � � � � � � � � � � � 	 � � � � �
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Generating Functions

Each of these rules can be thought of as a generating function that,

given some elements from � , generates some other element of � .

Saying that � is closed under these rules means that � cannot be made

any bigger using these generating functions — it already contains

everything “justified by its members.”

� � � � � � � � � 	 � � � 
 � �

� � � �

	 � � � � � � �

� � � �

� � � � � � � �

� � � �


 	 � � � � � � � �

� � � � � � � � � � � �


 � � � � � � � � � � � 	 � � � � �
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Let’s write these generating functions explicitly.

� � � � 	 
 � � � � � �

� � � � 	 
 � � � � 	 � �

� � � � 	 
 � 
 �

� 
 � � 	 
 � 	 � � � � � � � � � � �

� � � � 	 
 � � � � � � � � � � � � �

� � � � 	 
 � 
 	 � � � � � � � � � � � �

� � � � 	 
 � 
 � � � � � � � � � � � 	 � � � � � � � � � � � � � � �

Each one takes a set of terms � as input and produces a set of “terms

justified by � ” as output.
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If we now define a generating function for the whole set of inference

rules (by combining the generating functions for the individual rules),

� � � 	 
 � � � � 	 � � � � � 	 � � � � � 	 � � 
 � � 	 � � � � � 	 � � � � � 	 � � � � � 	

then we can restate the previous definition of the set of terms � like this:

Definition:

� A set � is said to be “closed under � ” (or “F-closed”) if � � � 	 � � .

� The set of terms � is the smallest � -closed set.

(I.e., if � is another set such that � � � 	 � � , then � � � .)
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Another definition by generating functions

Our alternate definition of the set of terms can also be stated using the

generating function � :

� � 
 �

� � � � 
 � � � � 	

� 
 � � � �
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Compare this definition of � with the one we saw last time:

� � 
 �

� � � � 
 � � � � � � � � � 	 � � 
 �

� � 	 � � � � � � � � � � � � � 
 	 � � � � � � � � � � � � �

� � 
 � � � � � � � � � � � 	 � � � � � � � � � � � � � � � �

� 


�
�
� �

The only difference is that we have “pulled out” � and given it a name.
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Note that our two definitions of terms characterize the same set from

different directions:

� “from above,” as the intersection of all � -closed sets;

� “from below,” as the limit (union) of a series of sets that start from �

and get “closer and closer to being � -closed.”

Proposition 3.2.6 in the book shows that these two definitions actually

define the same set.
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Warning: Hard hats on for the next slide!
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Structural Induction

The principle of structural induction on terms can also be re-stated using
generating functions:

Suppose � is the smallest � -closed set.

If, for each set � ,

from the assumption “ � � � 	 holds for every � � � ”

we can show “ � � � 	 holds for any � � � � � 	 ,”

then � � � 	 holds for all � � � .
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Structural Induction

The principle of structural induction on terms can also be re-stated using
generating functions:

Suppose � is the smallest � -closed set.

If, for each set � ,

from the assumption “ � � � 	 holds for every � � � ”

we can show “ � � � 	 holds for any � � � � � 	 ,”

then � � � 	 holds for all � � � .

Why?
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Structural Induction

The principle of structural induction on terms can also be re-stated using
generating functions:

Suppose � is the smallest � -closed set.

If, for each set � ,

from the assumption “ � � � 	 holds for every � � � ”

we can show “ � � � 	 holds for any � � � � � 	 ,”

then � � � 	 holds for all � � � .

Why? Because we assumed that � was the smallest � -closed set, i.e.,
that � � � for any other � -closed set � . But showing

for each set � ,

given � � � 	 for all � � �

we can show � � � 	 for all � � � � � 	

amounts to showing that � = “the set of all terms satisfying � ” is itself
an � -closed set, i.e. � � � , i.e., every element of � satisfies � .
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Structural Induction

Compare this with the structural induction principle for terms from last

lecture:

If, for each term 	 ,

given � � � 	 for all immediate subterms � of 	

we can show � � 	 	 ,

then � � � 	 holds for all � .
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Operational Semantics
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Abstract Machines

An abstract machine consists of:

� a set of states

� a transition relation on states, written � �
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Operational semantics for Booleans

Syntax of terms and values

� ::= terms

� � � � constant true

� � � 	 � constant false


 � � � � � � � � � 	 � � conditional

� ::= values

� � � � true value

� � � 	 � false value
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The evaluation relation � � � � � is the smallest relation closed under the
following rules:


 � � � � � � � � � � � � � 	 � � � � � � � (E-IFTRUE)


 � � � � 	 � � � � � � � � � 	 � � � � � � � (E-IFFALSE)

� � � � � ��


 � � � � � � � � � � � 	 � � � � � 
 � � �� � � � � � � � � 	 � � �

(E-IF)
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Digression

Suppose we wanted to change our evaluation strategy so that the � � � �

and � � 	 � branches of an 
 � get evaluated (in that order) before the

guard. How would we need to change the rules?
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Digression

Suppose we wanted to change our evaluation strategy so that the � � � �

and � � 	 � branches of an 
 � get evaluated (in that order) before the

guard. How would we need to change the rules?

Suppose, moreover, that if the evaluation of the � � � � and � � 	 � branches

leads to the same value, we want to immediately produce that value

(“short-circuiting” the evaluation of the guard). How would we need to

change the rules?
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Digression

Suppose we wanted to change our evaluation strategy so that the � � � �

and � � 	 � branches of an 
 � get evaluated (in that order) before the

guard. How would we need to change the rules?

Suppose, moreover, that if the evaluation of the � � � � and � � 	 � branches

leads to the same value, we want to immediately produce that value

(“short-circuiting” the evaluation of the guard). How would we need to

change the rules?

Of the rules we just invented, which are computation rules and which are

congruence rules?
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Evaluation, more explicitly

� � is the smallest two-place relation closed under the following rules:

� � 
 � � � � � � � � � � � � � 	 � � � 	 � � � 	 � � �

� � 
 � � � � 	 � � � � � � � � � 	 � � � 	 � � � 	 � � �

� � � � �
�
� 	 � � �

� � 
 � � � � � � � � � � � 	 � � � 	 � � 
 � �
�
� � � � � � � � � 	 � � � 	 	 � � �
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Even more explicitly...

What is the generating function corresponding to these rules?

(exercise)
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Reasoning about Evaluation
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Derivations

We can record the “justification” for a particular pair of terms that are in

the evaluation relation in the form of a tree.

(on the board)

Terminology:

� These trees are called derivation trees (or just derivations)

� The final statement in a derivation is its conclusion

� We say that the derivation is a witness for its conclusion (or a proof

of its conclusion) — it records all the reasoning steps that justify the

conclusion.
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Observation

Lemma: Suppose we are given a derivation tree � witnessing the pair

� � � �
�
	 in the evaluation relation. Then either

1. the final rule used in � is E-IFTRUE and we have
� 
 
 � � � � � � � � � � � � � 	 � � � and � � 
 � � , for some � � and � � , or

2. the final rule used in � is E-IFFALSE and we have

� 
 
 � � � � 	 � � � � � � � � � 	 � � � and � � 
 � � , for some � � and � � , or

3. the final rule used in � is E-IF and we have

� 
 
 � � � � � � � � � � � 	 � � � and � � 
 
 � � �� � � � � � � � � 	 � � � , for some

� � , � �� , � � , and � � ; moreover, the immediate subderivation of �

witnesses � � � � �
�
� 	 �
� � .
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Induction on Derivations

We can now write proofs about evaluation “by induction on derivation

trees.”

Given an arbitrary derivation � with conclusion � � � � � , we assume the
desired result for its immediate sub-derivation (if any) and proceed by a

case analysis (using the previous lemma) of the final evaluation rule used

in constructing the derivation tree.

E.g....
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Induction on Derivations — Example

Theorem: If � � � � � — i.e., if � � � � � 	 � � � — then size � � 	 � size � � � 	 .

Proof: By induction on a derivation � of � � � � � .
1. Suppose the final rule used in � is E-IFTRUE, with

� 
 
 � � � � � � � � � � � � � 	 � � � and � � 
 � � . Then the result is
immediate from the definition of size.

2. Suppose the final rule used in � is E-IFFALSE, with

� 
 
 � � � � 	 � � � � � � � � � 	 � � � and � � 
 � � . Then the result is again
immediate from the definition of size.

3. Suppose the final rule used in � is E-IF, with

� 
 
 � � � � � � � � � � � 	 � � � and � � 
 
 � � �� � � � � � � � � 	 � � � , where

� � � � �
�
� 	 �
� � is witnessed by a derivation � � . By the induction

hypothesis, size � � � 	 � size � �
�
� 	 . But then, by the definition of size, we

have size � � 	 � size � �
�
	 .
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Normal forms

A normal form is a term that cannot be evaluated any further — i.e., a

term � is a normal form (or “is in normal form”) if there is no � � such
that � � � � � .

A normal form is a state where the abstract machine is halted — i.e., it

can be regarded as a “result” of evaluation.
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Normal forms

A normal form is a term that cannot be evaluated any further — i.e., a

term � is a normal form (or “is in normal form”) if there is no � � such
that � � � � � .

A normal form is a state where the abstract machine is halted — i.e., it

can be regarded as a “result” of evaluation.

Recall that we intended the set of values (the boolean constants � � � � and

� � � 	 � ) to be exactly the possible “results of evaluation.”

Did we get this definition right?

CIS 500, 17 September 27-a



Values� normal forms

Theorem: A term � is a value iff it is in normal form.

Proof:

CIS 500, 17 September 28

Values� normal forms

Theorem: A term � is a value iff it is in normal form.

Proof: The � � direction is immediate from the definition of the
evaluation relation.
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Values� normal forms

Theorem: A term � is a value iff it is in normal form.

Proof: The � � direction is immediate from the definition of the
evaluation relation.

For the � � direction,
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Values� normal forms

Theorem: A term � is a value iff it is in normal form.

Proof: The � � direction is immediate from the definition of the
evaluation relation.

For the � � direction, it is convenient to prove the contrapositive: If � is
not a value, then it is not a normal form.

CIS 500, 17 September 28-c



Values� normal forms

Theorem: A term � is a value iff it is in normal form.

Proof: The � � direction is immediate from the definition of the
evaluation relation.

For the � � direction, it is convenient to prove the contrapositive: If � is
not a value, then it is not a normal form. The argument goes by
induction on � .

Note, first, that � must have the form 
 � � � � � � � � � � � 	 � � � (otherwise
it would be a value). If � � is � � � � or � � � 	 � , then rule E-IFTRUE or

E-IFFALSE applies to � , and we are done. Otherwise, � � is not a value
and so, by the induction hypothesis, there is some � �� such that � � � � � �� .
But then rule E-IF yields


 � � � � � � � � � � � 	 � � � � � 
 � � �� � � � � � � � � 	 � � �

i.e., � is not in normal form.
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Numbers

New syntactic forms

� ::= ... terms


 constant zero

	 � � � � successor

� � � � � predecessor


 	 � � � � � zero test

� ::= ... values

� � numeric value

� � ::= numeric values


 zero value

	 � � � � � successor value
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New evaluation rules � � � � �

� � � � � ��

	 � � � � � � � 	 � � � � ��

(E-SUCC)

� � � � 
 � � 
 (E-PREDZERO)

� � � � � 	 � � � � � � � � � � � � (E-PREDSUCC)

� � � � � ��

� � � � � � � � � � � � � ��

(E-PRED)


 	 � � � � 
 � � � � � � (E-ISZEROZERO)


 	 � � � � � 	 � � � � � � � � � � � � 	 � (E-ISZEROSUCC)

� � � � � ��


 	 � � � � � � � � 
 	 � � � � � ��

(E-ISZERO)
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Values are normal forms

Our observation a few slides ago that all values are in normal form still

holds for the extended language.
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Is the converse true? I.e., is every normal form a value?
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Stuck terms

Is the converse true? I.e., is every normal form a value?

No: some terms are stuck.

Formally, a stuck term is one that is a normal form but not a value.

Stuck terms model run-time errors.
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Multi-step evaluation.

The multi-step evaluation relation, � � � , is the reflexive, transitive closure
of single-step evaluation.

I.e., it is the smallest relation closed under the following rules:

� � � � �

� � � � � �

� � � � �

� � � � � � � � � � � � � �

� � � � � � �
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Termination of evaluation

Theorem: For every � there is some normal form � � such that � � � � � � .

Proof:
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Termination of evaluation

Theorem: For every � there is some normal form � � such that � � � � � � .

Proof:

� First, recall that single-step evaluation strictly reduces the size of the
term:

if � � � � � , then size � � 	 � size � � � 	

� Now, assume (for a contradiction) that

� � � � � � � � � � � � � 
 � � � �

is an infinite-length sequence such that

� � �� � � � �� � � � �� � � � �� � � 
 � � � � � ,

� Then

size � � � 	 � size � � � 	 � size � � � 	 � size � � � 	 � size � � 
 	 � � � �
is an infinite, strictly decreasing, sequence of natural numbers.

� But such a sequence cannot exist — contradiction!
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Termination Proofs

Most termination proofs have the same basic form:

Theorem: The relation � � � � � is terminating — i.e., there are
no infinite sequences � � , � � , � � , etc. such that � � � � � � � � 	 � � for
each � .

Proof:

1. Choose

� a well-founded set � 	 � 
 	 — i.e., a set 	 with a partial order


 such that there are no infinite descending chains

� � � � � � � � � � � � in 	

� a function � from � to 	

2. Show � � � 	 � � � 
 	 for all � � � 
 	 � �

3. Conclude that there are no infinite sequences � � , � � , � � , etc.
such that � � � � � � � � 	 � � for each � ), since, if there were, we
could construct an infinite descending chain in 	 .
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