
CIS 500

Software Foundations

Fall 2003

17 September

CIS 500, 17 September 1

Administrivia

� Reading for (before!) next week’s lectures: TAPL Chapter 5

CIS 500, 17 September 2

Review (and a few more details)

CIS 500, 17 September 3

Simple Arithmetic Expressions

The set � of terms is defined by the following abstract grammar:

� ::= terms

� � � � constant true

� � � 	 � constant false

 � � � � � � � � � 	 � � conditional

 constant zero

	 � � � � successor

� � � � � predecessor

 	 � � � � � zero test

CIS 500, 17 September 4

Inference Rule Notation

More explicitly: The set � is the smallest set closed under the following

rules.

� � � � � � � � � 	 � � �
 � �

� � � �

	 � � � � � � �

� � � �

� � � � � � � �

� � � �

 	 � � � � � � � �

� � � � � � � � � � � �

 � � � � � � � � � � � 	 � � � � �

CIS 500, 17 September 5

Generating Functions

Each of these rules can be thought of as a generating function that,

given some elements from � , generates some other element of � .

Saying that � is closed under these rules means that � cannot be made

any bigger using these generating functions — it already contains

everything “justified by its members.”

� � � � � � � � � 	 � � �
 � �

� � � �

	 � � � � � � �

� � � �

� � � � � � � �

� � � �

 	 � � � � � � � �

� � � � � � � � � � � �

 � � � � � � � � � � � 	 � � � � �

CIS 500, 17 September 6

Let’s write these generating functions explicitly.

� � � � 	
 � � � � � �

� � � � 	
 � � � � 	 � �

� � � � 	
 �
 �

�
 � � 	
 � 	 � � � � � � � � � � �

� � � � 	
 � � � � � � � � � � � � �

� � � � 	
 �
 	 � � � � � � � � � � � �

� � � � 	
 �
 � � � � � � � � � � � 	 � � � � � � � � � � � � � � �

Each one takes a set of terms � as input and produces a set of “terms

justified by � ” as output.

CIS 500, 17 September 7

If we now define a generating function for the whole set of inference

rules (by combining the generating functions for the individual rules),

� � � 	
 � � � � 	 � � � � � 	 � � � � � 	 � �
 � � 	 � � � � � 	 � � � � � 	 � � � � � 	

then we can restate the previous definition of the set of terms � like this:

Definition:

� A set � is said to be “closed under � ” (or “F-closed”) if � � � 	 � � .

� The set of terms � is the smallest � -closed set.

(I.e., if � is another set such that � � � 	 � � , then � � � .)

CIS 500, 17 September 8

Another definition by generating functions

Our alternate definition of the set of terms can also be stated using the

generating function � :

� �
 �

� � � �
 � � � � 	

�
 � � � �

CIS 500, 17 September 9

Compare this definition of � with the one we saw last time:

� �
 �

� � � �
 � � � � � � � � � 	 � �
 �

� � 	 � � � � � � � � � � � � �
 	 � � � � � � � � � � � � �

� �
 � � � � � � � � � � � 	 � � � � � � � � � � � � � � � �

�

�
�
� �

The only difference is that we have “pulled out” � and given it a name.

CIS 500, 17 September 10

Note that our two definitions of terms characterize the same set from

different directions:

� “from above,” as the intersection of all � -closed sets;

� “from below,” as the limit (union) of a series of sets that start from �

and get “closer and closer to being � -closed.”

Proposition 3.2.6 in the book shows that these two definitions actually

define the same set.

CIS 500, 17 September 11

Warning: Hard hats on for the next slide!

CIS 500, 17 September 12

Structural Induction

The principle of structural induction on terms can also be re-stated using
generating functions:

Suppose � is the smallest � -closed set.

If, for each set � ,

from the assumption “ � � � 	 holds for every � � � ”

we can show “ � � � 	 holds for any � � � � � 	 ,”

then � � � 	 holds for all � � � .

CIS 500, 17 September 13

Structural Induction

The principle of structural induction on terms can also be re-stated using
generating functions:

Suppose � is the smallest � -closed set.

If, for each set � ,

from the assumption “ � � � 	 holds for every � � � ”

we can show “ � � � 	 holds for any � � � � � 	 ,”

then � � � 	 holds for all � � � .

Why?

CIS 500, 17 September 13-a

Structural Induction

The principle of structural induction on terms can also be re-stated using
generating functions:

Suppose � is the smallest � -closed set.

If, for each set � ,

from the assumption “ � � � 	 holds for every � � � ”

we can show “ � � � 	 holds for any � � � � � 	 ,”

then � � � 	 holds for all � � � .

Why? Because we assumed that � was the smallest � -closed set, i.e.,
that � � � for any other � -closed set � . But showing

for each set � ,

given � � � 	 for all � � �

we can show � � � 	 for all � � � � � 	

amounts to showing that � = “the set of all terms satisfying � ” is itself
an � -closed set, i.e. � � � , i.e., every element of � satisfies � .

CIS 500, 17 September 13-b

Structural Induction

Compare this with the structural induction principle for terms from last

lecture:

If, for each term 	 ,

given � � � 	 for all immediate subterms � of 	

we can show � � 	 	 ,

then � � � 	 holds for all � .

CIS 500, 17 September 14

Operational Semantics

CIS 500, 17 September 15

Abstract Machines

An abstract machine consists of:

� a set of states

� a transition relation on states, written � �

CIS 500, 17 September 16

Operational semantics for Booleans

Syntax of terms and values

� ::= terms

� � � � constant true

� � � 	 � constant false

 � � � � � � � � � 	 � � conditional

� ::= values

� � � � true value

� � � 	 � false value

CIS 500, 17 September 17

The evaluation relation � � � � � is the smallest relation closed under the
following rules:

 � � � � � � � � � � � � � 	 � � � � � � � (E-IFTRUE)

 � � � � 	 � � � � � � � � � 	 � � � � � � � (E-IFFALSE)

� � � � � ��

 � � � � � � � � � � � 	 � � � � �
 � � �� � � � � � � � � 	 � � �

(E-IF)

CIS 500, 17 September 18

Digression

Suppose we wanted to change our evaluation strategy so that the � � � �

and � � 	 � branches of an
 � get evaluated (in that order) before the

guard. How would we need to change the rules?

CIS 500, 17 September 19

Digression

Suppose we wanted to change our evaluation strategy so that the � � � �

and � � 	 � branches of an
 � get evaluated (in that order) before the

guard. How would we need to change the rules?

Suppose, moreover, that if the evaluation of the � � � � and � � 	 � branches

leads to the same value, we want to immediately produce that value

(“short-circuiting” the evaluation of the guard). How would we need to

change the rules?

CIS 500, 17 September 19-a

Digression

Suppose we wanted to change our evaluation strategy so that the � � � �

and � � 	 � branches of an
 � get evaluated (in that order) before the

guard. How would we need to change the rules?

Suppose, moreover, that if the evaluation of the � � � � and � � 	 � branches

leads to the same value, we want to immediately produce that value

(“short-circuiting” the evaluation of the guard). How would we need to

change the rules?

Of the rules we just invented, which are computation rules and which are

congruence rules?

CIS 500, 17 September 19-b

Evaluation, more explicitly

� � is the smallest two-place relation closed under the following rules:

� �
 � � � � � � � � � � � � � 	 � � � 	 � � � 	 � � �

� �
 � � � � 	 � � � � � � � � � 	 � � � 	 � � � 	 � � �

� � � � �
�
� 	 � � �

� �
 � � � � � � � � � � � 	 � � � 	 � �
 � �
�
� � � � � � � � � 	 � � � 	 	 � � �

CIS 500, 17 September 20

Even more explicitly...

What is the generating function corresponding to these rules?

(exercise)

CIS 500, 17 September 21

Reasoning about Evaluation

CIS 500, 17 September 22

Derivations

We can record the “justification” for a particular pair of terms that are in

the evaluation relation in the form of a tree.

(on the board)

Terminology:

� These trees are called derivation trees (or just derivations)

� The final statement in a derivation is its conclusion

� We say that the derivation is a witness for its conclusion (or a proof

of its conclusion) — it records all the reasoning steps that justify the

conclusion.

CIS 500, 17 September 23

Observation

Lemma: Suppose we are given a derivation tree � witnessing the pair

� � � �
�
	 in the evaluation relation. Then either

1. the final rule used in � is E-IFTRUE and we have
�

 � � � � � � � � � � � � � 	 � � � and � �
 � � , for some � � and � � , or

2. the final rule used in � is E-IFFALSE and we have

�

 � � � � 	 � � � � � � � � � 	 � � � and � �
 � � , for some � � and � � , or

3. the final rule used in � is E-IF and we have

�

 � � � � � � � � � � � 	 � � � and � �

 � � �� � � � � � � � � 	 � � � , for some

� � , � �� , � � , and � � ; moreover, the immediate subderivation of �

witnesses � � � � �
�
� 	 �
� � .

CIS 500, 17 September 24

Induction on Derivations

We can now write proofs about evaluation “by induction on derivation

trees.”

Given an arbitrary derivation � with conclusion � � � � � , we assume the
desired result for its immediate sub-derivation (if any) and proceed by a

case analysis (using the previous lemma) of the final evaluation rule used

in constructing the derivation tree.

E.g....

CIS 500, 17 September 25

Induction on Derivations — Example

Theorem: If � � � � � — i.e., if � � � � � 	 � � � — then size � � 	 � size � � � 	 .

Proof: By induction on a derivation � of � � � � � .
1. Suppose the final rule used in � is E-IFTRUE, with

�

 � � � � � � � � � � � � � 	 � � � and � �
 � � . Then the result is
immediate from the definition of size.

2. Suppose the final rule used in � is E-IFFALSE, with

�

 � � � � 	 � � � � � � � � � 	 � � � and � �
 � � . Then the result is again
immediate from the definition of size.

3. Suppose the final rule used in � is E-IF, with

�

 � � � � � � � � � � � 	 � � � and � �

 � � �� � � � � � � � � 	 � � � , where

� � � � �
�
� 	 �
� � is witnessed by a derivation � � . By the induction

hypothesis, size � � � 	 � size � �
�
� 	 . But then, by the definition of size, we

have size � � 	 � size � �
�
	 .

CIS 500, 17 September 26

Normal forms

A normal form is a term that cannot be evaluated any further — i.e., a

term � is a normal form (or “is in normal form”) if there is no � � such
that � � � � � .

A normal form is a state where the abstract machine is halted — i.e., it

can be regarded as a “result” of evaluation.

CIS 500, 17 September 27

Normal forms

A normal form is a term that cannot be evaluated any further — i.e., a

term � is a normal form (or “is in normal form”) if there is no � � such
that � � � � � .

A normal form is a state where the abstract machine is halted — i.e., it

can be regarded as a “result” of evaluation.

Recall that we intended the set of values (the boolean constants � � � � and

� � � 	 �) to be exactly the possible “results of evaluation.”

Did we get this definition right?

CIS 500, 17 September 27-a

Values� normal forms

Theorem: A term � is a value iff it is in normal form.

Proof:

CIS 500, 17 September 28

Values� normal forms

Theorem: A term � is a value iff it is in normal form.

Proof: The � � direction is immediate from the definition of the
evaluation relation.

CIS 500, 17 September 28-a

Values� normal forms

Theorem: A term � is a value iff it is in normal form.

Proof: The � � direction is immediate from the definition of the
evaluation relation.

For the � � direction,

CIS 500, 17 September 28-b

Values� normal forms

Theorem: A term � is a value iff it is in normal form.

Proof: The � � direction is immediate from the definition of the
evaluation relation.

For the � � direction, it is convenient to prove the contrapositive: If � is
not a value, then it is not a normal form.

CIS 500, 17 September 28-c

Values� normal forms

Theorem: A term � is a value iff it is in normal form.

Proof: The � � direction is immediate from the definition of the
evaluation relation.

For the � � direction, it is convenient to prove the contrapositive: If � is
not a value, then it is not a normal form. The argument goes by
induction on � .

Note, first, that � must have the form
 � � � � � � � � � � � 	 � � � (otherwise
it would be a value). If � � is � � � � or � � � 	 � , then rule E-IFTRUE or

E-IFFALSE applies to � , and we are done. Otherwise, � � is not a value
and so, by the induction hypothesis, there is some � �� such that � � � � � �� .
But then rule E-IF yields

 � � � � � � � � � � � 	 � � � � �
 � � �� � � � � � � � � 	 � � �

i.e., � is not in normal form.

CIS 500, 17 September 28-d

Numbers

New syntactic forms

� ::= ... terms

 constant zero

	 � � � � successor

� � � � � predecessor

 	 � � � � � zero test

� ::= ... values

� � numeric value

� � ::= numeric values

 zero value

	 � � � � � successor value

CIS 500, 17 September 29

New evaluation rules � � � � �

� � � � � ��

	 � � � � � � � 	 � � � � ��

(E-SUCC)

� � � �
 � �
 (E-PREDZERO)

� � � � � 	 � � � � � � � � � � � � (E-PREDSUCC)

� � � � � ��

� � � � � � � � � � � � � ��

(E-PRED)

 	 � � � �
 � � � � � � (E-ISZEROZERO)

 	 � � � � � 	 � � � � � � � � � � � � 	 � (E-ISZEROSUCC)

� � � � � ��

 	 � � � � � � � �
 	 � � � � � ��

(E-ISZERO)

CIS 500, 17 September 30

Values are normal forms

Our observation a few slides ago that all values are in normal form still

holds for the extended language.

CIS 500, 17 September 31

Is the converse true? I.e., is every normal form a value?

CIS 500, 17 September 32

Stuck terms

Is the converse true? I.e., is every normal form a value?

No: some terms are stuck.

Formally, a stuck term is one that is a normal form but not a value.

Stuck terms model run-time errors.

CIS 500, 17 September 32-a

Multi-step evaluation.

The multi-step evaluation relation, � � � , is the reflexive, transitive closure
of single-step evaluation.

I.e., it is the smallest relation closed under the following rules:

� � � � �

� � � � � �

� � � � �

� � � � � � � � � � � � � �

� � � � � � �

CIS 500, 17 September 33

Termination of evaluation

Theorem: For every � there is some normal form � � such that � � � � � � .

Proof:

CIS 500, 17 September 34

Termination of evaluation

Theorem: For every � there is some normal form � � such that � � � � � � .

Proof:

� First, recall that single-step evaluation strictly reduces the size of the
term:

if � � � � � , then size � � 	 � size � � � 	

� Now, assume (for a contradiction) that

� � � � � � � � � � � � �
 � � � �

is an infinite-length sequence such that

� � �� � � � �� � � � �� � � � �� � �
 � � � � � ,

� Then

size � � � 	 � size � � � 	 � size � � � 	 � size � � � 	 � size � �
 	 � � � �
is an infinite, strictly decreasing, sequence of natural numbers.

� But such a sequence cannot exist — contradiction!

CIS 500, 17 September 34-a

Termination Proofs

Most termination proofs have the same basic form:

Theorem: The relation � � � � � is terminating — i.e., there are
no infinite sequences � � , � � , � � , etc. such that � � � � � � � � 	 � � for
each � .

Proof:

1. Choose

� a well-founded set � 	 �
 	 — i.e., a set 	 with a partial order

 such that there are no infinite descending chains

� � � � � � � � � � � � in 	

� a function � from � to 	

2. Show � � � 	 � � �
 	 for all � � �
 	 � �

3. Conclude that there are no infinite sequences � � , � � , � � , etc.
such that � � � � � � � � 	 � � for each �), since, if there were, we
could construct an infinite descending chain in 	 .

CIS 500, 17 September 35

