

Intuitions

Suppose we want to describe a function that adds three to any number we pass it. We might write
plus3 $x=\operatorname{succ}(\operatorname{succ}(\operatorname{succ} x))$
That is, "plus3 x is succ (succ (succ $x)$)."

Intuitions

Suppose we want to describe a function that adds three to any number we pass it. We might write

```
plus3 x = succ (succ (succ x))
```

That is, "plus3 x is succ (succ (succ x))."
Q: What is plus3 itself?
A: plus3 is the function that, given x, yields succ (succ (succ x)).

Intuitions

Suppose we want to describe a function that adds three to any number we pass it. We might write

```
plus3 x = succ (succ (succ x))
```

That is, "plus3 x is succ (succ (succ x))."
Q: What is plus3 itself?

Intuitions

Suppose we want to describe a function that adds three to any number we pass it. We might write

```
plus3 x = succ (succ (succ x))
```

That is, "plus3 x is succ (succ (succ x))."
Q: What is plus3 itself?
A: plus3 is the function that, given x, yields succ (succ (succ x)).

$$
\text { plus3 }=\lambda x . \operatorname{succ}(\operatorname{succ}(\operatorname{succ} x))
$$

This function exists independent of the name plus3.

Intuitions

Suppose we want to describe a function that adds three to any number we pass it. We might write

```
plus3 x = succ (succ (succ x))
```

That is, "plus3 x is succ (succ (succ $x)$)."
Q: What is plus3 itself?
A: plus3 is the function that, given x, yields succ (succ (succ x))

$$
\text { plus3 }=\lambda x . \operatorname{succ}(\operatorname{succ}(\operatorname{succ} x))
$$

This function exists independent of the name plus3.
On this view, plus3 (succ 0) is just a convenient shorthand for "the function that, given x, yields succ ($\operatorname{succ}(\operatorname{succ} x)$), applied to succ 0. ."

```
plus3 (succ 0) = ( \lambdax. succ (succ (succ x))) (succ 0)
```


Abstractions over Functions

Consider the λ-abstraction

```
g = \lambdaf.f (f (succ 0))
```

Note that the parameter variable f is used in the function position in the body of g . Terms like g are called higher-order functions.
If we apply g to an argument like plus3, the "substitution rule" yields a nontrivial computation:

```
g plus3 = ( }\lambda\textrm{f}.\textrm{f}(\textrm{f}(\operatorname{succ}0))) (\lambdax. succ (succ (succ x)))
```

 i.e. (\(\lambda \mathrm{x}\). succ \((\operatorname{succ}(\operatorname{succ} \mathrm{x}))\))
 (\((\lambda \mathrm{x} . \operatorname{succ}(\operatorname{succ}(\operatorname{succ} \mathrm{x})))\) (succ 0\()\))
 i.e. (\(\lambda \mathrm{x}\). succ \((\operatorname{succ}(\operatorname{succ} \mathrm{x}))\))
 (succ (succ (succ (succ 0))))
 i.e. succ (succ (succ (succ (succ (succ (succ 0)))))

Essentials

We have introduced two primitive syntactic forms:

- abstraction of a term t on some subterm x :
$\lambda \mathrm{x}$. t
"The function that, when applied to a value v, yields t with v in
place of $x . "$
- application of a function to an argument:
$\mathrm{t}_{1} \mathrm{t}_{2}$
"the function t_{1} applied to the argument t_{2} "

Recall that we wrote anonymous functions "fun $x \rightarrow t$ " in OCaml.

Abstractions Returning Functions

Consider the following variant of g :

$$
\text { double }=\lambda f . \lambda y . f(f y)
$$

I.e., double is the function that, when applied to a function f, yields a function that, when applied to an argument y, yields f (f y).

Example

```
        double plus3 0
= (\lambdaf. \lambday.f (f y))
        (\lambdax. succ (succ (succ x)))
        0
```

i.e. $(\lambda y .(\lambda x . \operatorname{succ}(\operatorname{succ}(\operatorname{succ} x)))$
$((\lambda x . \operatorname{succ}(\operatorname{succ}(\operatorname{succ} x))) y))$
0
i.e. $(\lambda x$. succ $(\operatorname{succ}(\operatorname{succ} x)))$
$((\lambda x . \operatorname{succ}(\operatorname{succ}(\operatorname{succ} x))) 0)$
i.e. $(\lambda x$. succ $(\operatorname{succ}(\operatorname{succ} x)))$
(succ (succ (succ 0)))
i.e. $\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(\operatorname{succ} 0))))$

The Pure Lambda-Calculus

As the preceding examples suggest, once we have λ-abstraction and application, we can throw away all the other language primitives and still have left a rich and powerful programming language.

In this language - the "pure lambda-calculus"- everything is a function.

- Variables always denote functions
- Functions always take other functions as parameters
- The result of a function is always a function

Scope

The λ-abstraction term $\lambda \mathrm{x} . \mathrm{t}$ binds the variable x .
The scope of this binding is the body t.
Occurrences of x inside t are said to be bound by the abstraction.
Occurrences of x that are not within the scope of an abstraction binding x are said to be free.
$\lambda \mathrm{x} . \lambda \mathrm{y} . \mathrm{x} \mathrm{y} \mathrm{z}$

Scope

The λ-abstraction term $\lambda \mathrm{x} . \mathrm{t}$ binds the variable x .
The scope of this binding is the body t.
Occurrences of x inside t are said to be bound by the abstraction.
Occurrences of x that are not within the scope of an abstraction binding x are said to be free.

$$
\begin{gathered}
\lambda x \cdot \lambda y \cdot x y z \\
\lambda x \cdot(\lambda y \cdot z y) y
\end{gathered}
$$

CIS 500, 22 September

Operational Semantics

Computation rule:

$$
\left(\lambda \mathrm{x} . \mathrm{t}_{12}\right) \mathrm{v}_{2} \longrightarrow\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}
$$

(E-APPABS)

Notation: $\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}$ is "the term that results from substituting free occurrences of x in t_{12} with v_{12}."

Operational Semantics

Computation rule:

$$
\left(\lambda \mathrm{x} . \mathrm{t}_{12}\right) \quad \mathrm{v}_{2} \longrightarrow\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12} \quad \text { (E-APPABS) }
$$

Notation: $\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}$ is "the term that results from substituting free occurrences of x in t_{12} with v_{12}."

Congruence rules:

$$
\begin{aligned}
& \frac{t_{1} \longrightarrow t_{1}^{\prime}}{\mathrm{t}_{1} \mathrm{t}_{2} \longrightarrow \mathrm{t}_{1}^{\prime} \mathrm{t}_{2}} \\
& \frac{\mathrm{t}_{2} \longrightarrow \mathrm{t}_{2}^{\prime}}{\mathrm{v}_{1} \mathrm{t}_{2} \longrightarrow \mathrm{v}_{1} \mathrm{t}_{2}^{\prime}}
\end{aligned}
$$

Alternative evaluation strategies

Strictly speaking, the language we have defined is called the pure, call-by-value lambda-calculus.
The evaluation strategy we have chosen - call by value - reflects standard conventions found in most mainstream languages.
Some other common ones:

- Call by name (cf. Haskell)
- Normal order (leftmost/outermost)
- Full (non-deterministic) beta-reduction

Terminology

A term of the form ($\lambda \mathrm{x} . \mathrm{t}$) v - that is, a λ-abstraction applied to a value - is called a redex (short for "reducible expression").

Programming in the Lambda-Calculus

Multiple arguments

Above, we wrote a function double that returns a function as an argument.

$$
\text { double }=\lambda f . \lambda y . f(f y)
$$

This idiom - a λ-abstraction that does nothing but immediately yield another abstraction - is very common in the λ-calculus.
In general, $\lambda \mathrm{x} . \lambda_{\mathrm{y}} \mathrm{f} . \mathrm{t}$ is a function that, given a value v for x , yields a function that, given a value u for y, yields t with v in place of x and u in place of y.

That is, $\lambda \mathrm{x} . \lambda \mathrm{y} . \mathrm{t}$ is a two-argument function.
(Recall the discussion of currying in OCaml.)

The "Church Booleans"

$\mathrm{tru}=\lambda \mathrm{t} . \lambda \mathrm{f} . \mathrm{t}$
$\mathrm{fls}=\lambda t . \lambda \mathrm{f} . \mathrm{f}$
tru v w
$=\left(\lambda_{\mathrm{t}} . \lambda \mathrm{f} . \mathrm{t}\right) \mathrm{v} \mathrm{w}$ by definition
$\longrightarrow(\lambda f . v) \mathrm{w} \quad$ reducing the underlined redex
$\longrightarrow \mathrm{v}$
reducing the underlined redex
fls v w
$=(\lambda t . \lambda f . f) \mathrm{v} \mathrm{w}$ by definition
$\longrightarrow\left(\lambda_{\mathrm{f}} . \mathrm{f}\right) \mathrm{w} \quad$ reducing the underlined redex
\longrightarrow w reducing the underlined redex

Syntactic conventions

Since λ-calculus provides only one-argument functions, all multi-argument functions must be written in curried style.

The following conventions make the linear forms of terms easier to read and write:

- Application associates to the left
E.g., $t u v$ means ($t u$) v, not $t(u$ $)$
- Bodies of λ - abstractions extend as far to the right as possible
E.g., $\lambda \mathrm{x} . \lambda \mathrm{y} . \mathrm{x}$ y means $\lambda \mathrm{x}$. ($\lambda \mathrm{y} . \mathrm{x} \mathrm{y}$), not $\lambda \mathrm{x}$. ($\lambda \mathrm{y} . \mathrm{x}$) y

Functions on Booleans

$$
\text { not }=\lambda \mathrm{b} . \mathrm{b} \text { fls tru }
$$

That is, not is a function that, given a boolean value v, returns $f l s$ if v is tru and tru if v is fls.

Functions on Booleans
 $$
\text { and }=\lambda b . \lambda c . b \mathrm{c} f 1 \mathrm{~s}
$$

That is, and is a function that, given two boolean values v and w, returns w if v is tru and fls if v is fls

Thus and v wields tru if both v and w are tru and $f l s$ if either v or w is fls.

Example

```
        fst (pair v w)
    = fst ((\lambdaf. \lambdas. \lambdab, b f s) v w) by definition
    |fst ((\lambdas. \lambdab. b v s) w)
    fst ( }\lambda\textrm{b}.\textrm{b v w)
```



```
    \longrightarrow(\lambdab. b v w) tru
\longrightarrow \quad t r u ~ v ~ w ~
\longrightarrow * ~ v ~
reducing the underlined redex
reducing the underlined redex
by definition
reducing the underlined redex
reducing the underlined redex
as before.
```


Pairs

```
pair = \lambdaf.\lambdas.\lambdab. b f s
fst = \lambdap. p tru
```

snd $=\lambda$ p. p fls

That is, pair v w is a function that, when applied to a boolean value b , applies b to v and w .

By the definition of booleans, this application yields v if b is tru and w if b is fls, so the first and second projection functions fst and snd can be implemented simply by supplying the appropriate boolean.

CIS 500, 22 September

Church numerals

Idea: represent the number n by a function that "repeats some action n times."
$c_{0}=\lambda s . \lambda z . z$
$\mathrm{c}_{1}=\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s} \mathrm{z}$
$\mathrm{c}_{2}=\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}$ (s z)
$\mathrm{c}_{3}=\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{s}(\mathrm{s} \mathrm{z}))$
That is, each number n is represented by a term c_{n} that takes two arguments, s and z (for "successor" and "zero"), and applies s, n times, to z .

Functions on Church Numerals

Successor:

$\mathrm{scc}=\lambda \mathrm{n} . \lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{n} \mathrm{s} z)$

Addition:

plus $=\lambda m . \lambda n . \lambda s . \lambda z . m s(n s z)$
Multiplication:

Functions on Church Numerals

Successor:

$\mathrm{scc}=\lambda \mathrm{n} . \lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{n} \mathrm{s} z)$

Addition:

plus $=\lambda m . \lambda n . \lambda s . \lambda z . m s(n s z)$
Multiplication:
times $=\lambda m . \lambda n . m(p l u s n) c_{0}$
Zero test:

Successor:
$\mathrm{scc}=\lambda \mathrm{n} . \lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{n} \mathrm{s} \mathrm{z})$
Addition:
plus $=\lambda m . \lambda n . \lambda s . \lambda z . m s(n s z)$

Multiplication:

times $=\lambda m . \lambda n . m(p l u s n) c_{0}$

Functions on Church Numerals

Successor:
$\mathrm{scc}=\lambda \mathrm{n} . \lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{n} \mathrm{s} \mathrm{z})$
Addition:
plus $=\lambda m . \lambda n . \lambda s . \lambda z . m \operatorname{s}(\mathrm{n} \mathrm{s} z)$
Multiplication:
times $=\lambda m . \lambda n . m(p l u s n) c_{0}$
Zero test:
iszro $=\lambda m . m(\lambda x . f l s) t r u$

Functions on Church Numerals

Successor:

$\mathrm{scc}=\lambda \mathrm{n} . \lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{n} \mathrm{s} \mathrm{z})$

Addition:

plus $=\lambda m . \lambda n . \lambda s . \lambda z . m \operatorname{s}(\mathrm{n} \mathrm{s} z)$

Multiplication:

times $=\lambda m . \lambda n . m(p l u s n) c_{0}$
Zero test:
iszro $=\lambda m . m(\lambda x . f l s)$ tru

What about predecessor?

CIS 500, 22 September
$z z=$ pair $c_{0} c_{0}$
ss = λ p. pair (snd p) (scc (snd p)

Normal forms

Recall:

- A normal form is a term that cannot take an evaluation step.
- A stuck term is a normal form that is not a value.

Are there any stuck terms in the pure λ-calculus?
Prove it.

Normal forms

Recall:

- A normal form is a term that cannot take an evaluation step.
- A stuck term is a normal form that is not a value.

Are there any stuck terms in the pure λ-calculus?
Prove it.
Does every term evaluate to a normal form?
Prove it.

CIS 500, 22 September

Divergence

```
omega = (\lambdax. x x)(\lambdax. x x)
```

Note that omega evaluates in one step to itself!
So evaluation of omega never reaches a normal form: it diverges.

Iterated Application

Suppose f is some λ-abstraction, and consider the following term:

$$
Y_{f}=(\lambda x \cdot f(x \quad x))(\lambda x \cdot f(x \quad x))
$$

Iterated Application

Suppose f is some λ-abstraction, and consider the following term:

$$
Y_{f}=(\lambda x . f(x f))(\lambda x . f(x f))
$$

Now the "pattern of divergence" becomes more interesting:

CIS 500, 22 September

Delaying Divergence

$$
\text { poisonpill }=\lambda y . \text { omega }
$$

Note that poisonpill is a value - it it will only diverge when we actually apply it to an argument. This means that we can safely pass it as an argument to other functions, return it as a result from functions, etc.

$$
\begin{gathered}
\text { (} \lambda \text { p. fst (pair p fls) tru) poisonpill } \\
\text { fst (pair poisonpill fls) tru } \\
\longrightarrow \\
\longrightarrow \\
\longrightarrow
\end{gathered}
$$

Cf. thunks in OCaml.
Y_{f} is still not very useful, since (like omega), all it does is diverge.
Is there any way we could "slow it down"?

CIS 500, 22 September

A delayed variant of omega

Here is a variant of omega in which the delay and divergence are a bit more tightly intertwined:

$$
\text { omegav }=\lambda y \cdot(\lambda x \cdot(\lambda y \cdot x x y))(\lambda x \cdot(\lambda y \cdot x x y)) y
$$

Note that omegav is a normal form. However, if we apply it to any argument v , it diverges:

> omegav v
> ($\lambda \mathrm{y}$. $(\lambda \mathrm{x} \cdot(\lambda \mathrm{y} \cdot \mathrm{x} x \mathrm{y}))(\lambda \mathrm{x} \cdot(\lambda \mathrm{y} \cdot \mathrm{x} \mathrm{x} y)) \mathrm{y}) \mathrm{v}$ ($\left.\boldsymbol{\lambda}_{\mathrm{x} .}\left(\lambda_{\mathrm{y}} \cdot \mathrm{x} x \mathrm{y}\right)\right)\left(\lambda_{\mathrm{x}} .\left(\lambda_{\mathrm{y}} \cdot \mathrm{x} x \mathrm{y}\right)\right) \mathrm{v}$ $(\lambda y . \quad(\lambda x .(\lambda y . x x y))(\lambda x .(\lambda y . x y y)) y) v$ omegav v

CIS 500, 22 September

Another delayed variant

Suppose f is a function. Define

$$
\mathrm{Z}_{\mathrm{f}}=\lambda \mathrm{y} \cdot(\lambda \mathrm{x} \cdot \mathrm{f}(\lambda \mathrm{y} \cdot \mathrm{x} \mathrm{x} y))(\lambda \mathrm{x} \cdot \mathrm{f}(\lambda \mathrm{y} \cdot \mathrm{x} x \mathrm{y})) \mathrm{y}
$$

This term combines the "added f " from Y_{f} with the "delayed divergence" of omegav.

Recursion

Let

$$
\mathrm{f}=\lambda \mathrm{fct}
$$

λn.
if $\mathrm{n}=0$ then 1
else n * (fct (pred n))
f looks just the ordinary factorial function, except that, in place of a recursive call in the last time, it calls the function fct, which is passed as a parameter.
N.b.: for brevity, this example uses "real" numbers and booleans, infix syntax, etc. It can easily be translated into the pure lambda-calculus (using Church numerals, etc.).

If we now apply Z_{f} to an argument v , something interesting happens:

$$
\begin{aligned}
& Z_{f} \mathrm{v} \\
& \text { (} \lambda \mathrm{y} \cdot(\lambda \mathrm{x} \cdot \mathrm{f}(\lambda \mathrm{y} \cdot \mathrm{x} x \mathrm{y}))(\lambda \mathrm{x} . \mathrm{f}(\lambda \mathrm{y} \cdot \mathrm{x} \mathrm{x} y)) \mathrm{y}) \mathrm{v} \\
& \text { (} \boldsymbol{\lambda} \mathrm{x} . \mathrm{f}(\lambda \mathrm{y} . \mathrm{x} x \mathrm{y}))(\lambda \mathrm{x} . \mathrm{f}(\lambda \mathrm{y} . \mathrm{x} x \mathrm{y})) \mathrm{v} \\
& f(\lambda y .(\lambda x . f(\lambda y . x f y))(\lambda x . f(\lambda y . x t y)) y) v \\
& \text { f } Z_{f} \text { v }
\end{aligned}
$$

Since Z_{f} and v are both values, the next computation step will be the reduction of $f Z_{f}$ - that is, before we "diverge," f gets to do some computation.
Now we are getting somewhere.

CIS 500, 22 September

We can use Z to "tie the knot" in the definition of f and obtain a real recursive factorial function:

$$
\begin{aligned}
& Z_{f} 3 \\
& \longrightarrow{ }^{*} \\
& \text { f } Z_{f} 3 \\
& = \\
& \text { (} \left.\boldsymbol{\lambda f c t .} \lambda_{n}\right) Z_{f} 3 \\
& \longrightarrow \longrightarrow \\
& \text { if } 3=0 \text { then } 1 \text { else } 3 *\left(Z_{f}(\text { pred } 3)\right) \\
& \longrightarrow{ }^{*} \\
& \left.3 *\left(Z_{f}(\operatorname{pred} 3)\right)\right) \\
& \longrightarrow \\
& 3 *\left(Z_{f} 2\right) \\
& 3 *\left(f Z_{f} 2\right)
\end{aligned}
$$

A Generic Z

If we define

$$
\mathrm{Z}=\lambda \mathrm{f} . \mathrm{Z}_{\mathrm{f}}
$$

i.e.,
$Z=\lambda f . \lambda y .(\lambda x . f(\lambda y . x y y))(\lambda x . f(\lambda y . x x y)) y$
then we can obtain the behavior of Z_{f} for any f we like, simply by applying Z to f.

$$
\mathrm{Zf} \quad \longrightarrow \quad \mathrm{Z}_{\mathrm{f}}
$$

For example:
fact $=\mathrm{Z} \quad(\lambda f c t$.
λn.
if $\mathrm{n}=0$ then 1
else n * (fct (pred n)))

Technical note:

The term z here is essentially the same as the fix discussed the book.

$$
\begin{aligned}
& \mathrm{Z}=\lambda_{\mathrm{f} \cdot} \cdot \lambda \mathrm{y} \cdot(\lambda \mathrm{x} \cdot \mathrm{f}(\lambda \mathrm{y} \cdot \mathrm{x} x \mathrm{y}))(\lambda \mathrm{x} \cdot \mathrm{f}(\lambda \mathrm{y} \cdot \mathrm{x} x \mathrm{y})) \mathrm{y} \\
& \mathrm{fix}=\lambda_{\mathrm{f}} \cdot(\lambda \mathrm{x} \cdot \mathrm{f}(\lambda \mathrm{y} \cdot \mathrm{x} \mathrm{x} y))(\lambda \mathrm{x} \cdot \mathrm{f}(\lambda \mathrm{y} \cdot \mathrm{x} \mathrm{x} y))
\end{aligned}
$$

Z is hopefully slightly easier to understand, since it has the property that $Z \mathrm{f} v \longrightarrow \mathrm{f}(\mathrm{Z} f) \mathrm{v}$, which fix does not (quite) share.

