
CIS 500

Software Foundations

Fall 2003

22 September

CIS 500, 22 September 1



Administrivia
� There is still some flexibility in recitation assignments; if you find you

need to switch sections, send mail to cis500@seas.

CIS 500, 22 September 2



The Lambda Calculus

CIS 500, 22 September 3



The lambda-calculus
� If our previous language of arithmetic expressions was the simplest

nontrivial programming language, then the lambda-calculus is the

simplest interesting programming language...

� Turing complete

� higher order (functions as data)

� main new feature: variable binding and lexical scope

� The e. coli of programming language research

� The foundation of many real-world programming language designs

(including ML, Haskell, Scheme, Lisp, ...)

CIS 500, 22 September 4



Intuitions

Suppose we want to describe a function that adds three to any number

we pass it. We might write

� � � � � � = � � � � � � � � � � � � � � � � �

That is, “ � � � � � � is � � � � � � � � � � � � � � � � � .”

CIS 500, 22 September 5



Intuitions

Suppose we want to describe a function that adds three to any number

we pass it. We might write

� � � � � � = � � � � � � � � � � � � � � � � �

That is, “ � � � � � � is � � � � � � � � � � � � � � � � � .”

Q: What is � � � � � itself?

CIS 500, 22 September 5-a



Intuitions

Suppose we want to describe a function that adds three to any number

we pass it. We might write

� � � � � � = � � � � � � � � � � � � � � � � �

That is, “ � � � � � � is � � � � � � � � � � � � � � � � � .”

Q: What is � � � � � itself?

A: � � � � � is the function that, given � , yields � � � � � � � � � � � � � � � � � .

CIS 500, 22 September 5-b



Intuitions

Suppose we want to describe a function that adds three to any number

we pass it. We might write

� � � � � � = � � � � � � � � � � � � � � � � �

That is, “ � � � � � � is � � � � � � � � � � � � � � � � � .”

Q: What is � � � � � itself?

A: � � � � � is the function that, given � , yields � � � � � � � � � � � � � � � � � .

� � � � � = � � � � � � � � � � � � � � � � � � � �

This function exists independent of the name � � � � � .

CIS 500, 22 September 5-c



Intuitions

Suppose we want to describe a function that adds three to any number

we pass it. We might write

� � � � � � = � � � � � � � � � � � � � � � � �

That is, “ � � � � � � is � � � � � � � � � � � � � � � � � .”

Q: What is � � � � � itself?

A: � � � � � is the function that, given � , yields � � � � � � � � � � � � � � � � � .

� � � � � = � � � � � � � � � � � � � � � � � � � �

This function exists independent of the name � � � � � .

On this view, � � � � � � � � � � � � is just a convenient shorthand for “the

function that, given � , yields � � � � � � � � � � � � � � � � � , applied to � � � � � .”

� � � � � � � � � � � � = � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

CIS 500, 22 September 5-d



Essentials

We have introduced two primitive syntactic forms:

� abstraction of a term � on some subterm � :

� � � �

“The function that, when applied to a value � , yields � with � in

place of � .”

� application of a function to an argument:

� � � �

“the function � � applied to the argument � � ”

Recall that we wrote anonymous functions “ � � � � � � ” in OCaml.

CIS 500, 22 September 6



Abstractions over Functions

Consider the � -abstraction

� = � � � � � � � � � � � � � �

Note that the parameter variable � is used in the function position in the
body of � . Terms like � are called higher-order functions.

If we apply � to an argument like � � � � � , the “substitution rule” yields a
nontrivial computation:

� � � � � �

�

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

CIS 500, 22 September 7



Abstractions Returning Functions

Consider the following variant of � :

� � � � � � = � � � � � � � � � � �

I.e., � � � � � � is the function that, when applied to a function � , yields a

function that, when applied to an argument � , yields � � � � � .

CIS 500, 22 September 8



Example

� � � � � � � � � � � �

�

� � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � �

�

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � �

�

� � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

CIS 500, 22 September 9



The Pure Lambda-Calculus

As the preceding examples suggest, once we have � -abstraction and

application, we can throw away all the other language primitives and still

have left a rich and powerful programming language.

In this language — the “pure lambda-calculus”— everything is a function.

� Variables always denote functions

� Functions always take other functions as parameters

� The result of a function is always a function

CIS 500, 22 September 10



Formalities

CIS 500, 22 September 11



Syntax
� ::= terms

� variable
� � � � abstraction

� � application

Terminology:

� terms in the pure � -calculus are often called � -terms

� terms of the form � � � � are called � -abstractions or just abstractions

CIS 500, 22 September 12



Scope

The � -abstraction term � � � � binds the variable � .

The scope of this binding is the body � .

Occurrences of � inside � are said to be bound by the abstraction.

Occurrences of � that are not within the scope of an abstraction binding

� are said to be free.

� � � � � � � � �

CIS 500, 22 September 13



Scope

The � -abstraction term � � � � binds the variable � .

The scope of this binding is the body � .

Occurrences of � inside � are said to be bound by the abstraction.

Occurrences of � that are not within the scope of an abstraction binding

� are said to be free.

� � � � � � � � �

� � � � � � � � � � �

CIS 500, 22 September 13-a



Values
� ::= values
� � � � abstraction value

CIS 500, 22 September 14



Operational Semantics

Computation rule:

� � � � � � � � � � � � � � �� � � � � � � (E-APPABS)

Notation: � � �� � � � � � � is “the term that results from substituting
free occurrences of � in � � � with � � � .”

CIS 500, 22 September 15



Operational Semantics

Computation rule:

� � � � � � � � � � � � � � �� � � � � � � (E-APPABS)

Notation: � � �� � � � � � � is “the term that results from substituting
free occurrences of � in � � � with � � � .”

Congruence rules:

� � � � �� �

� � � � � � �� � � �

(E-APP1)
� � � � �� �

� � � � � � � � �� �
(E-APP2)

CIS 500, 22 September 15-a



Terminology

A term of the form � � � � � � � — that is, a � -abstraction applied to a

value — is called a redex (short for “reducible expression”).

CIS 500, 22 September 16



Alternative evaluation strategies

Strictly speaking, the language we have defined is called the pure,

call-by-value lambda-calculus.

The evaluation strategy we have chosen — call by value — reflects

standard conventions found in most mainstream languages.

Some other common ones:

� Call by name (cf. Haskell)

� Normal order (leftmost/outermost)

� Full (non-deterministic) beta-reduction

CIS 500, 22 September 17



Programming in the Lambda-Calculus

CIS 500, 22 September 18



Multiple arguments

Above, we wrote a function � � � � � � that returns a function as an

argument.

� � � � � � = � � � � � � � � � � �

This idiom — a � -abstraction that does nothing but immediately yield

another abstraction — is very common in the � -calculus.

In general, � � � � � � � is a function that, given a value � for � , yields a

function that, given a value � for � , yields � with � in place of � and � in

place of � .

That is, � � � � � � � is a two-argument function.

(Recall the discussion of currying in OCaml.)

CIS 500, 22 September 19



Syntactic conventions

Since � -calculus provides only one-argument functions, all multi-argument

functions must be written in curried style.

The following conventions make the linear forms of terms easier to read

and write:

� Application associates to the left

E.g., � � � means � � � � � , not � � � � �

� Bodies of � - abstractions extend as far to the right as possible

E.g., � � � � � � � � means � � � � � � � � � � , not � � � � � � � � � �

CIS 500, 22 September 20



The “Church Booleans”
� � � � � � � � � � �

� � � � � � � � � � �

� 	 � � 


�

� � � � � � � � � � 
 by definition

� � � � � � � � 
 reducing the underlined redex

� � � reducing the underlined redex

� � � � 


�

� � � � � � � � � � 
 by definition

� � � � � � � � 
 reducing the underlined redex

� � 
 reducing the underlined redex

CIS 500, 22 September 21



Functions on Booleans

� � � = � � � � � � � � 	 �

That is, � � � is a function that, given a boolean value � , returns � � � if � is

� 	 � and � 	 � if � is � � � .

CIS 500, 22 September 22



Functions on Booleans

� � � = � � � � � � � � � � �

That is, � � � is a function that, given two boolean values � and 
 , returns


 if � is � 	 � and � � � if � is � � �

Thus � � � � 
 yields � 	 � if both � and 
 are � 	 � and � � � if either � or 


is � � � .

CIS 500, 22 September 23



Pairs
� � � �

� � � � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

That is, � � � 	 � 
 is a function that, when applied to a boolean value � ,

applies � to � and 
 .

By the definition of booleans, this application yields � if � is � 	 � and 
 if �

is � � � , so the first and second projection functions � � � and � � � can be

implemented simply by supplying the appropriate boolean.

CIS 500, 22 September 24



Example

� � � � � � � 	 � 
 �

� � � � � � � � � � � � � � � � � � � � 
 � by definition

� � � � � � � � � � � � � � � � � 
 � reducing the underlined redex

� � � � � � � � � � � 
 � reducing the underlined redex

�

� � � � � � 	 � � � � � � � � 
 � by definition

� � � � � � � � 
 � � 	 � reducing the underlined redex

� � � 	 � � 
 reducing the underlined redex

� �
�

� as before.

CIS 500, 22 September 25



Church numerals

Idea: represent the number � by a function that “repeats some action �

times.”

� � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

That is, each number � is represented by a term � � that takes two

arguments, � and � (for “successor” and “zero”), and applies � , � times,

to � .

CIS 500, 22 September 26



Functions on Church Numerals

Successor:

CIS 500, 22 September 27



Functions on Church Numerals

Successor:
� � � � � � � � � � � � � � � � � � �

CIS 500, 22 September 27-a



Functions on Church Numerals

Successor:
� � � � � � � � � � � � � � � � � � �

Addition:

CIS 500, 22 September 27-b



Functions on Church Numerals

Successor:
� � � � � � � � � � � � � � � � � � �

Addition:

� � � �

� � � � � � � � � � � � � � � � � � � �

CIS 500, 22 September 27-c



Functions on Church Numerals

Successor:
� � � � � � � � � � � � � � � � � � �

Addition:

� � � �

� � � � � � � � � � � � � � � � � � � �

Multiplication:

CIS 500, 22 September 27-d



Functions on Church Numerals

Successor:
� � � � � � � � � � � � � � � � � � �

Addition:

� � � �

� � � � � � � � � � � � � � � � � � � �

Multiplication:

� � � � � � � � � � � � � � � � � � � � � �

CIS 500, 22 September 27-e



Functions on Church Numerals

Successor:
� � � � � � � � � � � � � � � � � � �

Addition:

� � � �

� � � � � � � � � � � � � � � � � � � �

Multiplication:

� � � � � � � � � � � � � � � � � � � � � �

Zero test:

CIS 500, 22 September 27-f



Functions on Church Numerals

Successor:
� � � � � � � � � � � � � � � � � � �

Addition:

� � � �

� � � � � � � � � � � � � � � � � � � �

Multiplication:

� � � � � � � � � � � � � � � � � � � � � �

Zero test:

� � � � � � � � � � � � � � � � � � � � �

CIS 500, 22 September 27-g



Functions on Church Numerals

Successor:
� � � � � � � � � � � � � � � � � � �

Addition:

� � � �

� � � � � � � � � � � � � � � � � � � �

Multiplication:

� � � � � � � � � � � � � � � � � � � � � �

Zero test:

� � � � � � � � � � � � � � � � � � � � �

What about predecessor?

CIS 500, 22 September 27-h



Predecessor
� � �

� � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � �

CIS 500, 22 September 28



Predecessor
� � �

� � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � �

� � �

� � � � � � � � � � � � � �

CIS 500, 22 September 28-a



Normal forms

Recall:

� A normal form is a term that cannot take an evaluation step.

� A stuck term is a normal form that is not a value.

Are there any stuck terms in the pure � -calculus?

Prove it.

CIS 500, 22 September 29



Normal forms

Recall:

� A normal form is a term that cannot take an evaluation step.

� A stuck term is a normal form that is not a value.

Are there any stuck terms in the pure � -calculus?

Prove it.

Does every term evaluate to a normal form?

Prove it.

CIS 500, 22 September 29-a



Divergence

� � � � �

�

� � � � � � � � � � � � � �

Note that � � � � � evaluates in one step to itself!

So evaluation of � � � � � never reaches a normal form: it diverges.

CIS 500, 22 September 30



Divergence

� � � � �

�

� � � � � � � � � � � � � �

Note that � � � � � evaluates in one step to itself!

So evaluation of � � � � � never reaches a normal form: it diverges.

Being able to write a divergent computation does not seem very useful in

itself. However, there are variants of � � � � � that are very useful...

CIS 500, 22 September 30-a



Iterated Application

Suppose � is some � -abstraction, and consider the following term:

� �

�

� � � � � � � � � � � � � � � � � � � �
CIS 500, 22 September 31



Iterated Application

Suppose � is some � -abstraction, and consider the following term:

� �

�

� � � � � � � � � � � � � � � � � � � �

Now the “pattern of divergence” becomes more interesting:

� �
�

� � � � � � � � � � � � � � � � � � � �

� �

� � � � � � � � � � � � � � � � � � � � � � �

� �

� � � � � � � � � � � � � � � � � � � � � � � � � �

� �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� �
� � �

CIS 500, 22 September 31-a



� � is still not very useful, since (like � � � � � ), all it does is diverge.

Is there any way we could “slow it down”?

CIS 500, 22 September 32



Delaying Divergence

� � � � � � � � � � � � � � � � � � �

Note that � � � � � � � � � � is a value — it it will only diverge when we actually
apply it to an argument. This means that we can safely pass it as an
argument to other functions, return it as a result from functions, etc.

� � � � � � � � � � � 	 � � � � � � 	 � � � � � � � � � � � �

� �

� � � � � � � 	 � � � � � � � � � � � � � � � 	 �

� �
�

� � � � � � � � � � � 	 �

� �
� � � � �

� �
� � �

Cf. thunks in OCaml.

CIS 500, 22 September 33



A delayed variant of � � � � �

Here is a variant of � � � � � in which the delay and divergence are a bit
more tightly intertwined:

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Note that � � � � � � is a normal form. However, if we apply it to any
argument � , it diverges:

� � � � � � �

�

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� �

� � � � � � � � � � � � � � � � � � � � � � � � � � �

� �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�

� � � � � � �

CIS 500, 22 September 34



Another delayed variant

Suppose � is a function. Define
� � = � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

This term combines the “added � ” from � � with the “delayed divergence”

of � � � � � � .

CIS 500, 22 September 35



If we now apply � � to an argument � , something interesting happens:

� � �
�

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�

� � � �

Since � � and � are both values, the next computation step will be the

reduction of � � � — that is, before we “diverge,” � gets to do some

computation.

Now we are getting somewhere.

CIS 500, 22 September 36



Recursion

Let

� = � � � � �
� � �

� � � � � � � � � �

� � � � � � � � � � � � 	 � � � � �

� looks just the ordinary factorial function, except that, in place of a

recursive call in the last time, it calls the function � � � , which is passed as

a parameter.

N.b.: for brevity, this example uses “real” numbers and booleans, infix

syntax, etc. It can easily be translated into the pure lambda-calculus

(using Church numerals, etc.).

CIS 500, 22 September 37



We can use � to “tie the knot” in the definition of � and obtain a real

recursive factorial function:

� � �

� �
�

� � � �

�

� � � � � � � � � � � � � � � �

� � � �

� � � � � � � � � � � � � � � � � � � � � 	 � � � � �

� �
�

� � � � � � � 	 � � � � � �

� �

� � � � � � �

� �
�

� � � � � � � �

� � �

CIS 500, 22 September 38



A Generic �

If we define

� � � � � � �

i.e.,

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

then we can obtain the behavior of � � for any � we like, simply by

applying � to � .
� � � � � �

CIS 500, 22 September 39



For example:

� � � � = � � � � � � �

� � �
� � � � � � � � � �

� � � � � � � � � � � � 	 � � � � � �

CIS 500, 22 September 40



Technical note:

The term � here is essentially the same as the � � � discussed the book.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� is hopefully slightly easier to understand, since it has the property that

� � � � �
�

� � � � � � , which � � � does not (quite) share.

CIS 500, 22 September 41


