CIS 500

Software Foundations Fall 2003

1 October

CIS 500, 1 October

CIS 500, 1 October

Formal Methods in Computer Science

lightweight formal methods

Type Systems

big topic in PL very successful in practice very active "enabling technology" for all sorts of other things, e.g. language-based security the "skeleton" around which modern programming languages are often designed

Plan

- For today, we'll go back to the simple language of arithmetic and boolean expressions and show how to give it a (very simple) type system
- On October 15th (after the midterm and fall break), we'll develop a simple type system for the lambda-calculus
- We'll spend a good part of the rest of the semester adding features to this type system

CIS 500, 1 October 5

Arithmetic Expressions - Syntax

```
t ::=
                                                       terms
                                                         constant true
         true
                                                         constant false
         false
         if t then t else t
                                                         conditional
                                                         constant zero
         succ t
                                                         successor
                                                         predecessor
         pred t
                                                         zero test
         iszero t
v ∷=
                                                       values
                                                         true value
         true
                                                         false value
         false
                                                         numeric value
         nv
nv ∷=
                                                       numeric values
         0
                                                         zero value
                                                         successor value
         succ nv
```

Outline

- 1. begin with a set of terms, a set of values, and an evaluation relation
- 2. define a set of types classifying values according to their "shapes"
- 3. define a typing relation t: T that classifies terms according to the shape of the values that result from evaluating them
- 4. check that the typing relation is sound in the sense that,
 - (a) if t: T and $t \longrightarrow^* v$, then v : T
 - (b) if t: T, then evaluation of t will not get stuck

(N.b.: we actually state #4a in a slightly more general way...)

CIS 500, 1 October 6

Evaluation Rules

if true then t_2 else $t_3 \longrightarrow t_2$ (E-IFTRUE)

if false then t_2 else $t_3 \longrightarrow t_3$ (E-IFFALSE)

 $\frac{\mathtt{t}_1 \longrightarrow \mathtt{t}_1'}{\text{if } \mathtt{t}_1 \text{ then } \mathtt{t}_2 \text{ else } \mathtt{t}_3 \longrightarrow \text{if } \mathtt{t}_1' \text{ then } \mathtt{t}_2 \text{ else } \mathtt{t}_3} \tag{E-IF}$

$$\frac{t_1 \longrightarrow t_1'}{\text{succ } t_1 \longrightarrow \text{succ } t_1'} \qquad \text{(E-Succ)}$$

$$\text{pred } 0 \longrightarrow 0 \qquad \text{(E-PREDZERO)}$$

$$\text{pred } (\text{succ } \text{nv}_1) \longrightarrow \text{nv}_1 \qquad \text{(E-PREDSUcc)}$$

$$\frac{t_1 \longrightarrow t_1'}{\text{pred } t_1 \longrightarrow \text{pred } t_1'} \qquad \text{(E-PRED)}$$

$$\text{iszero } 0 \longrightarrow \text{true} \qquad \text{(E-IszeroZero)}$$

$$\text{iszero } (\text{succ } \text{nv}_1) \longrightarrow \text{false} \qquad \text{(E-IszeroSucc)}$$

$$\frac{t_1 \longrightarrow t_1'}{\text{iszero } t_1 \longrightarrow \text{iszero } t_1'} \qquad \text{(E-IsZero)}$$

Types

In this language, values have two possible "shapes": they are either booleans or numbers.

T ::= types

Bool type o

Nat

type of booleans type of numbers

10

CIS 500, 1 October

CIS 500, 1 October

Typing Rules

true: Bool (T-TRUE)

false: Bool (T-FALSE)

Typing Rules

if t₁ then t₂ else t₃: T

true: Bool (T-TRUE)
false: Bool (T-FALSE)

Typing Rules

true: Bool (T-TRUE)

false: Bool (T-FALSE) $\frac{t_1: Bool \quad t_2: T \quad t_3: T}{if \ t_1 \ then \ t_2 \ else \ t_3: T}$ 0: Nat(T-ZERO)

777.19

Typing Rules

(T-TRUE) true : Bool (T-FALSE) false: Bool t₁: Bool $t_2:T$ $t_3:T$ (T-IF) if t_1 then t_2 else t_3 : T (T-ZERO) 0 : Nat t₁: Nat (T-Succ) succ t₁: Nat t₁: Nat (T-PRED) pred t₁: Nat

11-c

CIS 500, 1 October 11-b

Typing Rules

(T-TRUE) true : Bool (T-FALSE) false: Bool $t_1: Bool t_2: T$ $t_3:T$ (T-IF) if t₁ then t₂ else t₃: T (T-ZERO) 0 : Nat t₁: Nat (T-Succ) succ t₁: Nat t₁: Nat (T-PRED) pred t₁: Nat t₁: Nat (T-IsZero) iszero t₁: Bool

Imprecision of Typing

Like other static program analyses, type systems are generally imprecise: they do not predict exactly what kind of value will be returned by every program, but just a conservative (safe) approximation.

$$\frac{t_1: Bool}{if t_1 then t_2 else t_3: T}$$
(T-IF)

Using this rule, we cannot assign a type to

if true then 0 else false

CIS 500, 1 October

even though this term will certainly evaluate to a number.

CIS 500, 1 October 11-d CIS 500, 1 October 12

Properties of the Typing Relation

CIS 500, 1 October 13

Typing Derivations

Every pair (t,T) in the typing relation can be justified by a derivation tree built from instances of the inference rules.

Proofs of properties about the typing relation often proceed by induction on typing derivations.

Type Safety

The safety (or soundness) of this type system can be expressed by two properties:

- 1. Progress: A well-typed term is not stuck

 If t : T, then either t is a value or else $t \longrightarrow t'$ for some t'.
- 2. Preservation: Types are preserved by one-step evaluation

```
If t: T and t \longrightarrow t', then t': T.
```

CIS 500, 1 October 14

Inversion

Lemma:

```
    If true: R, then R = Bool.
    If false: R, then R = Bool.
    If if t<sub>1</sub> then t<sub>2</sub> else t<sub>3</sub>: R, then t<sub>1</sub>: Bool, t<sub>2</sub>: R, and t<sub>3</sub>: R.
    If 0: R, then R = Nat.
    If succ t<sub>1</sub>: R, then R = Nat and t<sub>1</sub>: Nat.
    If pred t<sub>1</sub>: R, then R = Nat and t<sub>1</sub>: Nat.
    If iszero t<sub>1</sub>: R, then R = Bool and t<sub>1</sub>: Nat.
```

CIS 500, 1 October 15 CIS 500, 1 October 16

Inversion

Lemma:

```
    If true: R, then R = Bool.
    If false: R, then R = Bool.
    If if t<sub>1</sub> then t<sub>2</sub> else t<sub>3</sub>: R, then t<sub>1</sub>: Bool, t<sub>2</sub>: R, and t<sub>3</sub>: R.
    If 0: R, then R = Nat.
    If succ t<sub>1</sub>: R, then R = Nat and t<sub>1</sub>: Nat.
    If pred t<sub>1</sub>: R, then R = Nat and t<sub>1</sub>: Nat.
    If iszero t<sub>1</sub>: R, then R = Bool and t<sub>1</sub>: Nat.
    Proof: ...
```

CIS 500, 1 October 16-a

Typechecking Algorithm

```
typeof(t) = if t = true then Bool
            else if t = false then Bool
            else if t = if t1 then t2 else t3 then
             let T1 = typeof(t1) in
             let T2 = typeof(t2) in
             let T3 = typeof(t3) in
             if T1 = Bool and T2=T3 then T2
              else "not typable"
            else if t = 0 then Nat
            else if t = succ t1 then
             let T1 = typeof(t1) in
             if T1 = Nat then Nat else "not typable"
            else if t = pred t1 then
             let T1 = typeof(t1) in
             if T1 = Nat then Nat else "not typable"
            else if t = iszero t1 then
             let T1 = typeof(t1) in
             if T1 = Nat then Bool else "not typable"
```

Inversion

Lemma:

```
    If true: R, then R = Bool.
    If false: R, then R = Bool.
    If if t<sub>1</sub> then t<sub>2</sub> else t<sub>3</sub>: R, then t<sub>1</sub>: Bool, t<sub>2</sub>: R, and t<sub>3</sub>: R.
    If 0: R, then R = Nat.
    If succ t<sub>1</sub>: R, then R = Nat and t<sub>1</sub>: Nat.
    If pred t<sub>1</sub>: R, then R = Nat and t<sub>1</sub>: Nat.
    If iszero t<sub>1</sub>: R, then R = Bool and t<sub>1</sub>: Nat.
```

This leads directly to a recursive algorithm for calculating the type of a term...

CIS 500, 1 October 16-b

Canonical Forms

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type Nat, then v is a numeric value

Canonical Forms

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type Nat, then v is a numeric value

Proof: ...

CIS 500, 1 October

Progress

Theorem: Suppose t is a well-typed term (that is, t: T for some T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof:

Progress

Theorem: Suppose t is a well-typed term (that is, t: T for some T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

CIS 500, 1 October 19

Progress

Theorem: Suppose t is a well-typed term (that is, t: T for some T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on a derivation of t: T.

18-a

Progress

Theorem: Suppose t is a well-typed term (that is, t: T for some T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on a derivation of t: T.

The T-TRUE, T-FALSE, and T-ZERO cases are immediate, since t in these cases is a value.

CIS 500, 1 October

Progress

Theorem: Suppose t is a well-typed term (that is, t: T for some T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on a derivation of t: T.

The T-TRUE, T-FALSE, and T-ZERO cases are immediate, since t in these cases is a value.

```
Case T-IF: t = if t_1 then t_2 else t_3

t_1 : Bool t_2 : T t_3 : T
```

By the induction hypothesis, either t_1 is a value or else there is some t_1' such that $t_1 \longrightarrow t_1'$. If t_1 is a value, then the canonical forms lemma tells us that it must be either true or false, in which case either E-IFTRUE or E-IFFALSE applies to t. On the other hand, if $t_1 \longrightarrow t_1'$, then, by E-IF, $t \longrightarrow if$ t_1' then t_2 else t_3 .

Progress

Theorem: Suppose t is a well-typed term (that is, t: T for some T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on a derivation of t: T.

The T-TRUE, T-FALSE, and T-ZERO cases are immediate, since t in these cases is a value.

```
Case T-IF: t = if t_1 then t_2 else t_3
t_1 : Bool t_2 : T t_3 : T
```

CIS 500, 1 October 19-d

Preservation

Theorem: If t: T and t \longrightarrow t', then t': T.

CIS 500, 1 October 19-e CIS 500, 1 October 20

19-c

Preservation

Theorem: If t:T and $t\longrightarrow t'$, then t':T.

Proof: ...

CIS 500, 1 October 20-a