

Plan

- For today, we'll go back to the simple language of arithmetic and boolean expressions and show how to give it a (very simple) type system
- On October 15th (after the midterm and fall break), we'll develop a simple type system for the lambda-calculus
- We'll spend a good part of the rest of the semester adding features to this type system

Outline

1. begin with a set of terms, a set of values, and an evaluation relation
2. define a set of types classifying values according to their "shapes"
3. define a typing relation $\mathrm{t}: \mathrm{T}$ that classifies terms according to the shape of the values that result from evaluating them
4. check that the typing relation is sound in the sense that,
(a) if $t: T$ and $t \longrightarrow * *$, then $v: T$
(b) if $t: T$, then evaluation of t will not get stuck
(N.b.: we actually state \#4a in a slightly more general way...)

CIS 500, 1 October

Evaluation Rules

$$
\begin{gather*}
\text { if true then } t_{2} \text { else } t_{3} \longrightarrow t_{2} \\
\text { if false then } t_{2} \text { else } t_{3} \longrightarrow t_{3} \tag{E-IF}\\
t_{1} \longrightarrow t_{1}^{\prime} \\
\text { if } t_{1} \text { then } t_{2} \text { else } t_{3} \longrightarrow \text { if } t_{1}^{\prime} \text { then } t_{2} \text { else } t_{3}
\end{gather*}
$$

(E-IFTRUE)
(E-IFFALSE)

Types

In this language, values have two possible "shapes": they are either booleans or numbers.
T : :=
Bool
types
type of booleans
type of numbers

Typing Rules

true : Bool
(T-TRUE)
false : Bool
(T-FALSE)

Typing Rules

true : Bool
false : Bool
$t_{1}:$ Bool $\quad t_{2}: T \quad t_{3}: T$
if t_{1} then t_{2}

(T-TRUE) (T-FALSE)

Typing Rules

> true : Bool (T-TRUE)
> false : Bool
> (T-FALSE)
> $\begin{aligned} & t_{1}: \text { Bool } \quad t_{2}: T \quad t_{3}: T \\ & \text { if } t_{1} \text { then } t_{2} \text { else } t_{3}: T\end{aligned}$
> 0 : Nat
> (T-ZERO)
> t_{1} : Nat
> succ $\mathrm{t}_{1}:$ Nat
> (T-SUCC)
> (T-PRED)

CIS 500, 1 October

Imprecision of Typing

Like other static program analyses, type systems are generally imprecise: they do not predict exactly what kind of value will be returned by every program, but just a conservative (safe) approximation.

$$
\begin{equation*}
\frac{t_{1}: \text { Bool } t_{2}: T \quad t_{3}: T}{\text { if } t_{1} \text { then } t_{2} \text { else } t_{3}: T} \tag{T-IF}
\end{equation*}
$$

Using this rule, we cannot assign a type to
if true then 0 else false
even though this term will certainly evaluate to a number.

Properties of the Typing Relation

Typing Derivations

Every pair (t, T) in the typing relation can be justified by a derivation tree built from instances of the inference rules.

Proofs of properties about the typing relation often proceed by induction on typing derivations.

Type Safety

The safety (or soundness) of this type system can be expressed by two properties:

1. Progress: A well-typed term is not stuck

If $t: T$, then either t is a value or else $t \longrightarrow t^{\prime}$ for some t^{\prime}.
2. Preservation: Types are preserved by one-step evaluation

If $t: T$ and $t \longrightarrow t^{\prime}$, then $t^{\prime}: T$.

Inversion

Lemma:

1. If true : R, then $R=$ Bool.
2. If false : R , then $\mathrm{R}=$ Bool.
3. If if t_{1} then t_{2} else $t_{3}: R$, then $t_{1}:$ Bool, $t_{2}: R$, and $t_{3}: R$.
4. If $0: R$, then $R=$ Nat.
5. If succ $t_{1}: R$, then $R=N a t$ and $t_{1}:$ Nat.
6. If pred $t_{1}: R$, then $R=N a t$ and $t_{1}: N a t$.
7. If iszero $t_{1}: R$, then $R=$ Bool and $t_{1}:$ Nat.

Inversion

Lemma:

1. If true : R, then $R=$ Bool.
2. If false : R , then $\mathrm{R}=$ Bool.
3. If if t_{1} then t_{2} else $\mathrm{t}_{3}: \mathrm{R}$, then $\mathrm{t}_{1}:$ Bool, $\mathrm{t}_{2}: \mathrm{R}$, and $\mathrm{t}_{3}: \mathrm{R}$.
4. If $0: R$, then $R=$ Nat.
5. If succ $\mathrm{t}_{1}: \mathrm{R}$, then $\mathrm{R}=\mathrm{Nat}$ and $\mathrm{t}_{1}:$ Nat.
6. If pred $t_{1}: R$, then $R=N a t$ and $t_{1}:$ Nat.
7. If iszero $t_{1}: R$, then $R=$ Bool and $t_{1}:$ Nat.

Proof: ...

Typechecking Algorithm

```
typeof(t) = if t = true then Bool
        else if t = false then Bool
        else if t = if t1 then t2 else t3 then
        let T1 = typeof(t1) in
        let T2 = typeof(t2) in
        let T3 = typeof(t3) in
        if T1 = Bool and T2=T3 then T2
        else "not typable"
    else if t = O then Nat
    else if t = succ t1 then
        let T1 = typeof(t1) in
        if T1 = Nat then Nat else "not typable"
    else if t = pred t1 then
            let T1 = typeof(t1) in
            if T1 = Nat then Nat else "not typable"
        else if t = iszero t1 then
            let T1 = typeof(t1) in
            if T1 = Nat then Bool else "not typable"
```


Progress

Theorem: Suppose t is a well-typed term (that is, $\mathrm{t}: \mathrm{T}$ for some T).
Then either t is a value or else there is some t^{\prime} with $t \longrightarrow t^{\prime}$.
Proof: By induction on a derivation of $t: T$.
The T-True, T-FALse, and T-Zero cases are immediate, since t in these cases is a value.

Progress

Theorem: Suppose t is a well-typed term (that is, $t: T$ for some T). Then either t is a value or else there is some t^{\prime} with $t \longrightarrow t^{\prime}$.

Proof: By induction on a derivation of $t: T$.
The T-True, T-FALSE, and T-Zero cases are immediate, since t in these cases is a value.

Case T-IF: $\quad t=$ if t_{1} then t_{2} else t_{3}

$$
\mathrm{t}_{1}: \text { Bool } \quad \mathrm{t}_{2}: \mathrm{T} \quad \mathrm{t}_{3}: \mathrm{T}
$$

By the induction hypothesis, either t_{1} is a value or else there is some t_{1}^{\prime} such that $t_{1} \longrightarrow t_{1}{ }_{1}$. If t_{1} is a value, then the canonical forms lemma tells us that it must be either true or false, in which case either E-IFTRUE or E-IFFALSE applies to t. On the other hand, if $t_{1} \longrightarrow t_{1}^{\prime}$, then, by $E-I F, t \longrightarrow$ if t_{1}^{\prime} then t_{2} else t_{3}.

Progress

Theorem: Suppose t is a well-typed term (that is, $\mathrm{t}: \mathrm{T}$ for some T).
Then either t is a value or else there is some t^{\prime} with $t \longrightarrow t^{\prime}$.
Proof: By induction on a derivation of $t: T$.
The T-True, T-FALSE, and T-ZERO cases are immediate, since t in these cases is a value.

```
Case T-IF: t}=\mathrm{ if }\mp@subsup{t}{1}{}\mathrm{ then }\mp@subsup{t}{2}{}\mathrm{ else t }\mp@subsup{t}{3}{
```

$$
\mathrm{t}_{1}: \text { Bool } \quad \mathrm{t}_{2}: \mathrm{T} \quad \mathrm{t}_{3}: \mathrm{T}
$$

Preservation

Theorem: If $t: T$ and $t \longrightarrow t^{\prime}$, then $t^{\prime}: T$.

Theorem: If $\mathrm{t}: \mathrm{T}$ and $\mathrm{t} \longrightarrow \mathrm{t}^{\prime}$, then $\mathrm{t}^{\prime}: \mathrm{T}$.

Proof: ...

