CIS 500

Software Foundations

Fall 2003

1 October

Types

Formal Methods in Computer Science

lightweight formal methods

Type Systems

big topic in PL very successful in practice very active "enabling technology" for all sorts of other things, e.g. language-based security the "skeleton" around which modern programming languages are often designed

Plan

- For today, we'll go back to the simple language of arithmetic and boolean expressions and show how to give it a (very simple) type system
- On October 15th (after the midterm and fall break), we'll develop a simple type system for the lambda-calculus
- We'll spend a good part of the rest of the semester adding features to this type system

Outline

1. begin with a set of terms, a set of values, and an evaluation relation
2. define a set of types classifying values according to their "shapes"
3. define a typing relation $t: T$ that classifies terms according to the shape of the values that result from evaluating them
4. check that the typing relation is sound in the sense that,
(a) if $t: T$ and $t \longrightarrow{ }^{*} v$, then $v: T$
(b) if $t: T$, then evaluation of t will not get stuck
(N.b.: we actually state \#4a in a slightly more general way...)

Arithmetic Expressions - Syntax

$\mathrm{t} \quad::=$
true
false
if t then t else t
0
succ t
pred t
iszero t
v $::=$
true
false
nv
nv $\quad::=$
0
succ nv
terms
constant true constant false conditional constant zero successor predecessor zero test
values
true value
false value numeric value
numeric values
zero value
successor value

Evaluation Rules

$$
\text { if true then } \mathrm{t}_{2} \text { else } \mathrm{t}_{3} \longrightarrow \mathrm{t}_{2}
$$

(E-IFTRUE)
(E-IFFALSE)

$$
\begin{aligned}
& \mathrm{t}_{1} \longrightarrow \mathrm{t}_{1}^{\prime} \\
& \text { succ } \mathrm{t}_{1} \longrightarrow \operatorname{succ} \mathrm{t}_{1}^{\prime} \\
& \text { pred } 0 \longrightarrow 0 \\
& \text { pred (succ } \mathrm{nv}_{1} \text {) } \longrightarrow \mathrm{nv}_{1} \\
& \mathrm{t}_{1} \longrightarrow \mathrm{t}_{1}^{\prime} \\
& \text { pred } \mathrm{t}_{1} \longrightarrow \text { pred } \mathrm{t}_{1}^{\prime} \\
& \text { iszero } 0 \longrightarrow \text { true } \\
& \text { iszero (succ } n v_{1} \text {) } \longrightarrow \text { false } \\
& \frac{\mathrm{t}_{1} \longrightarrow \mathrm{t}_{1}^{\prime}}{\text { iszero } \mathrm{t}_{1} \longrightarrow \text { iszero } \mathrm{t}_{1}^{\prime}}
\end{aligned}
$$

Types

In this language, values have two possible "shapes": they are either booleans or numbers.

T ::=
Bool
Nat

types
type of booleans
type of numbers

Typing Rules

true : Bool
false : Bool

(T-TRUE)
(T-FALSE)

Typing Rules

(T-TRUE)
(T-FALSE)
(T-IF)

Typing Rules

true : Bool
false : Bool
$\mathrm{t}_{1}:$ Bool $\mathrm{t}_{2}: \mathrm{T} \quad \mathrm{t}_{3}: \mathrm{T}$
if t_{1} then t_{2} else $\mathrm{t}_{3}: \mathrm{T}$
$0:$ Nat

(T-TRUE)
(T-FALSE)
(T-IF)
(T-ZERO)

Typing Rules

$$
\begin{gathered}
\text { true : Bool } \\
\text { false : Bool } \\
\mathrm{t}_{1}: \text { Bool } \mathrm{t}_{2}: \mathrm{T} \quad \mathrm{t}_{3}: \mathrm{T} \\
\hline \text { if } \mathrm{t}_{1} \text { then } \mathrm{t}_{2} \text { else } \mathrm{t}_{3}: \mathrm{T} \\
0: \mathrm{Nat} \\
\frac{\mathrm{t}_{1}: \mathrm{Nat}}{{\operatorname{succ~} \mathrm{t}_{1}: \mathrm{Nat}}_{\mathrm{t}_{1}: \mathrm{Nat}}^{\mathrm{pred}_{1}: \mathrm{Nat}}}
\end{gathered}
$$

(T-TRUE)
(T-FALSE)
(T-IF)
(T-ZERO)
(T-Succ)
(T-PRED)

Typing Rules

(T-TRUE)
(T-FALSE)
(T-IF)
(T-ZERO)
(T-Succ)
(T-PRED)
(T-IsZero)

Imprecision of Typing

Like other static program analyses, type systems are generally imprecise: they do not predict exactly what kind of value will be returned by every program, but just a conservative (safe) approximation.

$\mathrm{t}_{1}:$ Bool $\mathrm{t}_{2}: \mathrm{T} \quad \mathrm{t}_{3}: \mathrm{T}$
if t_{1} then t_{2} else $\mathrm{t}_{3}: \mathrm{T}$

Using this rule, we cannot assign a type to

```
if true then O else false
```

even though this term will certainly evaluate to a number.

Properties of the Typing Relation

Type Safety

The safety (or soundness) of this type system can be expressed by two properties:

1. Progress: A well-typed term is not stuck

If $t: T$, then either t is a value or else $t \longrightarrow t^{\prime}$ for some t^{\prime}.
2. Preservation: Types are preserved by one-step evaluation If $t: T$ and $t \longrightarrow t^{\prime}$, then $t^{\prime}: T$.

Typing Derivations

Every pair (t, T) in the typing relation can be justified by a derivation tree built from instances of the inference rules.

Proofs of properties about the typing relation often proceed by induction on typing derivations.

Inversion

Lemma:

1. If true : R , then $\mathrm{R}=$ Bool.
2. If false : R , then $\mathrm{R}=$ Bool.
3. If if t_{1} then t_{2} else $t_{3}: R$, then $t_{1}: B o o l, t_{2}: R$, and $t_{3}: R$.
4. If $0: R$, then $R=$ Nat.
5. If succ $t_{1}: R$, then $R=N a t$ and $t_{1}:$ Nat.
6. If pred $t_{1}: R$, then $R=N a t$ and $t_{1}:$ Nat.
7. If iszero $t_{1}: R$, then $R=$ Bool and $t_{1}:$ Nat.

Inversion

Lemma:

1. If true : R , then $\mathrm{R}=$ Bool.
2. If false : R , then $\mathrm{R}=$ Bool.
3. If if t_{1} then t_{2} else $t_{3}: R$, then $t_{1}:$ Bool, $t_{2}: R$, and $t_{3}: R$.
4. If $0: R$, then $R=$ Nat.
5. If succ $t_{1}: R$, then $R=N a t$ and $t_{1}:$ Nat.
6. If pred $t_{1}: R$, then $R=N a t$ and $t_{1}:$ Nat.
7. If iszero $t_{1}: R$, then $R=$ Bool and $t_{1}:$ Nat.

Proof:

Inversion

Lemma:

1. If true : R , then $\mathrm{R}=$ Bool.
2. If false : R , then $\mathrm{R}=$ Bool.
3. If if t_{1} then t_{2} else $t_{3}: R$, then $t_{1}:$ Bool, $t_{2}: R$, and $t_{3}: R$.
4. If $0: R$, then $R=$ Nat.
5. If succ $t_{1}: R$, then $R=N a t$ and $t_{1}:$ Nat.
6. If pred $t_{1}: R$, then $R=N a t$ and $t_{1}:$ Nat.
7. If iszero $t_{1}: R$, then $R=$ Bool and $t_{1}:$ Nat.

Proof:

This leads directly to a recursive algorithm for calculating the type of a term...

Typechecking Algorithm

```
typeof(t) = if t = true then Bool
    else if t = false then Bool
    else if t = if t1 then t2 else t3 then
        let T1 = typeof(t1) in
        let T2 = typeof(t2) in
        let T3 = typeof(t3) in
        if T1 = Bool and T2=T3 then T2
        else "not typable"
    else if t = O then Nat
    else if t = succ t1 then
        let T1 = typeof(t1) in
        if T1 = Nat then Nat else "not typable"
    else if t = pred t1 then
        let T1 = typeof(t1) in
        if T1 = Nat then Nat else "not typable"
    else if t = iszero t1 then
        let T1 = typeof(t1) in
        if T1 = Nat then Bool else "not typable"
```


Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.
2. If v is a value of type Nat, then v is a numeric value

Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.
2. If v is a value of type Nat, then v is a numeric value

Proof: ...

Progress

Theorem: Suppose t is a well-typed term (that is, $t: T$ for some T). Then either t is a value or else there is some t^{\prime} with $t \longrightarrow t^{\prime}$.

Progress

Theorem: Suppose t is a well-typed term (that is, $\mathrm{t}: \mathrm{T}$ for some T). Then either t is a value or else there is some t^{\prime} with $t \longrightarrow t^{\prime}$. Proof:

Progress

Theorem: Suppose t is a well-typed term (that is, $t: T$ for some T). Then either t is a value or else there is some t^{\prime} with $t \longrightarrow t^{\prime}$. Proof: By induction on a derivation of $t: T$.

Progress

Theorem: Suppose t is a well-typed term (that is, $t: T$ for some T). Then either t is a value or else there is some t^{\prime} with $t \longrightarrow t^{\prime}$.

Proof: By induction on a derivation of $t: T$.
The T-True, T-False, and T-Zero cases are immediate, since t in these cases is a value.

Progress

Theorem: Suppose t is a well-typed term (that is, $t: T$ for some T).
Then either t is a value or else there is some t^{\prime} with $t \longrightarrow t^{\prime}$.
Proof: By induction on a derivation of $t: T$.
The T-True, T-FALSE, and T-ZERO cases are immediate, since t in these cases is a value.

Case T-IF: $\quad t=i f t_{1}$ then t_{2} else t_{3}

$$
\mathrm{t}_{1}: \text { Bool } \quad \mathrm{t}_{2}: \mathrm{T} \quad \mathrm{t}_{3}: \mathrm{T}
$$

Progress

Theorem: Suppose t is a well-typed term (that is, $t: T$ for some T). Then either t is a value or else there is some t^{\prime} with $t \longrightarrow t^{\prime}$.

Proof: By induction on a derivation of $t: T$.
The T-True, T-FALSE, and T-ZERO cases are immediate, since t in these cases is a value.

Case T-IF: $\quad t=i f t_{1}$ then t_{2} else t_{3}

$$
\mathrm{t}_{1}: \text { Bool } \quad \mathrm{t}_{2}: \mathrm{T} \quad \mathrm{t}_{3}: \mathrm{T}
$$

By the induction hypothesis, either t_{1} is a value or else there is some t_{1}^{\prime} such that $t_{1} \longrightarrow t_{1}^{\prime}$. If t_{1} is a value, then the canonical forms lemma tells us that it must be either true or false, in which case either E-IFTRUE or E-IFFALSE applies to t. On the other hand, if $t_{1} \longrightarrow t_{1}{ }_{1}$, then, by $E-I F, t \longrightarrow$ if t_{1}^{\prime} then t_{2} else t_{3}.

Preservation

Theorem: If $t: T$ and $t \longrightarrow t^{\prime}$, then $t^{\prime}: T$.

Preservation

Theorem: If $t: T$ and $t \longrightarrow t^{\prime}$, then $t^{\prime}: T$. Proof: ...

