
CIS 500

Software Foundations

Fall 2003

1 October

CIS 500, 1 October 1



Types

CIS 500, 1 October 2



Formal Methods in Computer Science

lightweight formal methods

CIS 500, 1 October 3



Type Systems

big topic in PL very successful in practice very active ”enabling

technology” for all sorts of other things, e.g. language-based security the

”skeleton” around which modern programming languages are often

designed

CIS 500, 1 October 4



Plan
� For today, we’ll go back to the simple language of arithmetic and

boolean expressions and show how to give it a (very simple) type

system

� On October 15th (after the midterm and fall break), we’ll develop a

simple type system for the lambda-calculus

� We’ll spend a good part of the rest of the semester adding features

to this type system

CIS 500, 1 October 5



Outline

1. begin with a set of terms, a set of values, and an evaluation relation

2. define a set of types classifying values according to their “shapes”

3. define a typing relation � � � that classifies terms according to the

shape of the values that result from evaluating them

4. check that the typing relation is sound in the sense that,

(a) if � � � and � � �
�

� , then � � �

(b) if � � � , then evaluation of � will not get stuck

(N.b.: we actually state #4a in a slightly more general way...)

CIS 500, 1 October 6



Arithmetic Expressions – Syntax
� ::= terms

� � � � constant true
� � � � � constant false

� � � � 	 � 
 � � � � � � conditional

� constant zero

� � � � � successor

 � � � � predecessor

� � � � � � � zero test

� ::= values

� � � � true value

� � � � � false value


 � numeric value


 � ::= numeric values

� zero value

� � � � 
 � successor value

CIS 500, 1 October 7



Evaluation Rules

� � � � � � � 	 � 
 � � � � � � � � � � � � (E-IFTRUE)

� � � � � � � � 	 � 
 � � � � � � � � � � � � (E-IFFALSE)

� � � � �

�
�

� � � � � 	 � 
 � � � � � � � � � � � � �

�
� � 	 � 
 � � � � � � � �

(E-IF)

CIS 500, 1 October 8



� � � � �

�
�

� � � � � � � � � � � � �

�
�

(E-SUCC)

 � � � � � � � (E-PREDZERO)

 � � � � � � � � 
 � � � � � 
 � � (E-PREDSUCC)

� � � � �

�
�

 � � � � � � �  � � � �

�
�

(E-PRED)

� � � � � � � � � � � � � (E-ISZEROZERO)

� � � � � � � � � � � 
 � � � � � � � � � � (E-ISZEROSUCC)

� � � � �

�
�

� � � � � � � � � � � � � � � � �

�
�

(E-ISZERO)

CIS 500, 1 October 9



Types

In this language, values have two possible “shapes”: they are either

booleans or numbers.

� ::= types

� � � � type of booleans

� � � type of numbers

CIS 500, 1 October 10



Typing Rules

� � � � � � � � � (T-TRUE)

� � � � � � � � � � (T-FALSE)

CIS 500, 1 October 11



Typing Rules

� � � � � � � � � (T-TRUE)

� � � � � � � � � � (T-FALSE)

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

(T-IF)

CIS 500, 1 October 11-a



Typing Rules

� � � � � � � � � (T-TRUE)

� � � � � � � � � � (T-FALSE)

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

(T-IF)

� � � � � (T-ZERO)

CIS 500, 1 October 11-b



Typing Rules

� � � � � � � � � (T-TRUE)

� � � � � � � � � � (T-FALSE)

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

(T-IF)

� � � � � (T-ZERO)

� � � � � �

� � � � � � � � � �

(T-SUCC)

� � � � � �

� � � � � � � � � �

(T-PRED)

CIS 500, 1 October 11-c



Typing Rules

� � � � � � � � � (T-TRUE)

� � � � � � � � � � (T-FALSE)

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

(T-IF)

� � � � � (T-ZERO)

� � � � � �

� � � � � � � � � �

(T-SUCC)

� � � � � �

� � � � � � � � � �

(T-PRED)

� � � � � �

� � � � � � � � � � � � �
(T-ISZERO)

CIS 500, 1 October 11-d



Imprecision of Typing

Like other static program analyses, type systems are generally imprecise:

they do not predict exactly what kind of value will be returned by every

program, but just a conservative (safe) approximation.

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

(T-IF)

Using this rule, we cannot assign a type to

� � � � � � � � � � � � � � � � � � � �

even though this term will certainly evaluate to a number.

CIS 500, 1 October 12



Properties of the Typing Relation

CIS 500, 1 October 13



Type Safety

The safety (or soundness) of this type system can be expressed by two

properties:

1. Progress: A well-typed term is not stuck

If � � � , then either � is a value or else � � � � � for some � � .

2. Preservation: Types are preserved by one-step evaluation

If � � � and � � � � � , then � � � � .

CIS 500, 1 October 14



Typing Derivations

Every pair

�

�
�

�
�

in the typing relation can be justified by a derivation

tree built from instances of the inference rules.

T-ZERO

� � � � �

T-ISZERO

� � � � � � � � � � � �

T-ZERO

� � � � �

T-ZERO

� � � � �

T-PRED

� � � � � � � � �

T-IF

� � � � � � � � � � � � � � � � � � � � � � � � � � �

Proofs of properties about the typing relation often proceed by induction

on typing derivations.

CIS 500, 1 October 15



Inversion

Lemma:

1. If � � � � � � , then � � � � � � .

2. If � � � � � � � , then � � � � � � .

3. If � � � � � � � � � � � � � � � � � � , then � � � � � � � , � � � � , and � � � � .

4. If � � � , then � � � � � .

5. If � � � � � � � � , then � � � � � and � � � � � � .

6. If � � � � � � � � , then � � � � � and � � � � � � .

7. If � � � � � � � � � � , then � � � � � � and � � � � � � .

CIS 500, 1 October 16



Inversion

Lemma:

1. If � � � � � � , then � � � � � � .

2. If � � � � � � � , then � � � � � � .

3. If � � � � � � � � � � � � � � � � � � , then � � � � � � � , � � � � , and � � � � .

4. If � � � , then � � � � � .

5. If � � � � � � � � , then � � � � � and � � � � � � .

6. If � � � � � � � � , then � � � � � and � � � � � � .

7. If � � � � � � � � � � , then � � � � � � and � � � � � � .

Proof: ...

CIS 500, 1 October 16-a



Inversion

Lemma:

1. If � � � � � � , then � � � � � � .

2. If � � � � � � � , then � � � � � � .

3. If � � � � � � � � � � � � � � � � � � , then � � � � � � � , � � � � , and � � � � .

4. If � � � , then � � � � � .

5. If � � � � � � � � , then � � � � � and � � � � � � .

6. If � � � � � � � � , then � � � � � and � � � � � � .

7. If � � � � � � � � � � , then � � � � � � and � � � � � � .

Proof: ...

This leads directly to a recursive algorithm for calculating the type of a

term...

CIS 500, 1 October 16-b



Typechecking Algorithm
� �  � � � � � �

� � � � � � � � � � 	 � 
 � � � �

� � � � � � � � � � � � � � 	 � 
 � � � �

� � � � � � � � � � � � � 	 � 
 � � � � � � � � � 	 � 


� � � � � � � �  � � � � � � � � 


� � � � � � � �  � � � � � � � � 


� � � � � � � �  � � � � � � � � 


� � � � � � � � � � 
 � � � � � � � 	 � 
 � �

� � � �

�

 � � � �  � � � �
�

� � � � � � � � � � 	 � 
 	 � �

� � � � � � � � � � � � � � � 	 � 


� � � � � � � �  � � � � � � � � 


� � � � � 	 � � � 	 � 
 	 � � � � � �

�

 � � � �  � � � �
�

� � � � � � � �

 � � � � � � 	 � 


� � � � � � � �  � � � � � � � � 


� � � � � 	 � � � 	 � 
 	 � � � � � �

�

 � � � �  � � � �
�

� � � � � � � � � � � � � � � � � 	 � 


� � � � � � � �  � � � � � � � � 


� � � � � 	 � � � 	 � 
 � � � � � � � �

�

 � � � �  � � � �
�

CIS 500, 1 October 17



Canonical Forms

Lemma:

1. If � is a value of type � � � � , then � is either � � � � or � � � � � .

2. If � is a value of type � � � , then � is a numeric value

CIS 500, 1 October 18



Canonical Forms

Lemma:

1. If � is a value of type � � � � , then � is either � � � � or � � � � � .

2. If � is a value of type � � � , then � is a numeric value

Proof: ...

CIS 500, 1 October 18-a



Progress

Theorem: Suppose � is a well-typed term (that is, � � � for some � ).

Then either � is a value or else there is some � � with � � � � � .

CIS 500, 1 October 19



Progress

Theorem: Suppose � is a well-typed term (that is, � � � for some � ).

Then either � is a value or else there is some � � with � � � � � .

Proof:

CIS 500, 1 October 19-a



Progress

Theorem: Suppose � is a well-typed term (that is, � � � for some � ).

Then either � is a value or else there is some � � with � � � � � .

Proof: By induction on a derivation of � � � .

CIS 500, 1 October 19-b



Progress

Theorem: Suppose � is a well-typed term (that is, � � � for some � ).

Then either � is a value or else there is some � � with � � � � � .

Proof: By induction on a derivation of � � � .

The T-TRUE, T-FALSE, and T-ZERO cases are immediate, since � in these

cases is a value.

CIS 500, 1 October 19-c



Progress

Theorem: Suppose � is a well-typed term (that is, � � � for some � ).

Then either � is a value or else there is some � � with � � � � � .

Proof: By induction on a derivation of � � � .

The T-TRUE, T-FALSE, and T-ZERO cases are immediate, since � in these

cases is a value.

Case T-IF: � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

CIS 500, 1 October 19-d



Progress

Theorem: Suppose � is a well-typed term (that is, � � � for some � ).

Then either � is a value or else there is some � � with � � � � � .

Proof: By induction on a derivation of � � � .

The T-TRUE, T-FALSE, and T-ZERO cases are immediate, since � in these

cases is a value.

Case T-IF: � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

By the induction hypothesis, either � � is a value or else there is some �
�

�

such that � � � � � �� . If � � is a value, then the canonical forms lemma

tells us that it must be either � � � � or � � � � � , in which case either

E-IFTRUE or E-IFFALSE applies to � . On the other hand, if � � � � �
�

� ,

then, by E-IF, � � � � � � �� � � � � � � � � � � � � .

CIS 500, 1 October 19-e



Preservation

Theorem: If � � � and � � � � � , then � � � � .

CIS 500, 1 October 20



Preservation

Theorem: If � � � and � � � � � , then � � � � .

Proof: ...

CIS 500, 1 October 20-a


