

Formal Methods in Computer Science

lightweight formal methods

Type Systems

big topic in PL very successful in practice very active "enabling technology" for all sorts of other things, e.g. language-based security the "skeleton" around which modern programming languages are often designed

Plan

- For today, we'll go back to the simple language of arithmetic and boolean expressions and show how to give it a (very simple) type system
- On October 15th (after the midterm and fall break), we'll develop a simple type system for the lambda-calculus
- We'll spend a good part of the rest of the semester adding features to this type system

Outline

- 1. begin with a set of terms, a set of values, and an evaluation relation
- 2. define a set of types classifying values according to their "shapes"
- 3. define a typing relation t : T that classifies terms according to the shape of the values that result from evaluating them
- 4. check that the typing relation is sound in the sense that,
 - (a) if t : T and t $\longrightarrow^* v$, then v : T
 - (b) if t : T, then evaluation of t will not get stuck

(N.b.: we actually state #4a in a slightly more general way...)

Arithmetic Expressions - Syntax

t ∷=		terms
	true false if t then t else t O succ t pred t iszero t	constant true constant false conditional constant zero successor predecessor zero test
v ::=		values
	true false nv	true value false value numeric value
nv ::=	0 succ nv	numeric values zero value successor value

if true then t_2 else $t_3 \longrightarrow t_2$ (E-IFTRUE)

if false then t_2 else $t_3 \longrightarrow t_3$ (E-IFFALSE)

 $\mathtt{t}_1 \longrightarrow \mathtt{t}_1'$

if t_1 then t_2 else $t_3 \longrightarrow \text{if } t_1'$ then t_2 else t_3

(E-IF)

$\frac{\mathtt{t}_1 \longrightarrow \mathtt{t}_1'}{\mathtt{succ} \ \mathtt{t}_1 \longrightarrow \mathtt{succ} \ \mathtt{t}_1'}$	(E-Succ)
pred $0 \longrightarrow 0$	(E-PredZero)
pred (succ nv_1) $\longrightarrow nv_1$	(E-PREDSUCC)
$\frac{\mathtt{t_1} \longrightarrow \mathtt{t_1'}}{\mathtt{pred } \mathtt{t_1} \longrightarrow \mathtt{pred } \mathtt{t_1'}}$	(E-Pred)
iszero O \longrightarrow true	(E-IszeroZero)
iszero (succ nv_1) \longrightarrow false	(E-IszeroSucc)
$\frac{\mathtt{t_1} \longrightarrow \mathtt{t_1'}}{\texttt{iszero } \mathtt{t_1} \longrightarrow \texttt{iszero } \mathtt{t_1'}}$	(E-IsZero)

CIS 500, 1 October

Typing Rules	
true : Bool false : Bool	(T-TRUE) (T-FALSE)

Typing Rulestrue : Bool(T-TRUE)false : Bool(T-FALSE) $t_1 : Bool$ $t_2 : T$ $t_3 : T$ if t_1 then t_2 else $t_3 : T$ (T-IF)

Typing Rules	
true : Bool false : Bool	(T-TRUE) (T-FALSE)
$\frac{t_1:Bool}{if t_1 then t_2 else t_3:T}$	(T-IF)
0 : Nat	(T-ZERO)

Typing Rules

L	(1-1 RUE)
1	(I-HALSE)
t ₃ : T	(T-IF)
e t ₃ : T	
	(T-ZERO)
	(T-Succ)
at	
at	

Typing Rules

(T-FALSE)	false : Bool
(]-[E)	t_1 : Bool t_2 : T t_3 : T
	if t_1 then t_2 else t_3 : T
(T-ZERO)	O : Nat
(T-Succ)	t ₁ : Nat
	succ t ₁ : Nat
(T-PRED)	t ₁ : Nat
	pred t ₁ : Nat
	t_1 : Nat

Imprecision of Typing

Like other static program analyses, type systems are generally imprecise: they do not predict exactly what kind of value will be returned by every program, but just a conservative (safe) approximation.

 $\frac{t_1 : Bool}{if t_1 then t_2 else t_3 : T}$

Using this rule, we cannot assign a type to

```
if true then 0 else false
```

even though this term will certainly evaluate to a number.

(T-IF)

Properties of the Typing Relation

Type Safety

The safety (or soundness) of this type system can be expressed by two properties:

1. Progress: A well-typed term is not stuck

If t : T, then either t is a value or else $t \longrightarrow t'$ for some t'.

2. Preservation: Types are preserved by one-step evaluation

If t : T and t \longrightarrow t', then t' : T.

Typing Derivations

Every pair (t, T) in the typing relation can be justified by a derivation tree built from instances of the inference rules.

Proofs of properties about the typing relation often proceed by induction on typing derivations.

Inversion

Lemma:

- 1. If true : R, then R = Bool.
- 2. If false : R, then R = Bool.
- 3. If if t_1 then t_2 else t_3 : R, then t_1 : Bool, t_2 : R, and t_3 : R.

```
4. If 0 : R, then R = Nat.
```

5. If succ t_1 : R, then R = Nat and t_1 : Nat.

```
6. If pred t_1: R, then R = Nat and t_1: Nat.
```

7. If iszero t_1 : R, then R = Bool and t_1 : Nat.

Inversion

Lemma:

- 1. If true : R, then R = Bool.
- 2. If false : R, then R = Bool.
- 3. If if t_1 then t_2 else t_3 : R, then t_1 : Bool, t_2 : R, and t_3 : R.

```
4. If 0 : R, then R = Nat.
```

5. If succ t_1 : R, then R = Nat and t_1 : Nat.

```
6. If pred t_1: R, then R = Nat and t_1: Nat.
```

7. If iszero t_1 : R, then R = Bool and t_1 : Nat.

Proof: ...

Inversion

Lemma:

- 1. If true : R, then R = Bool.
- 2. If false : R, then R = Bool.
- 3. If if t_1 then t_2 else t_3 : R, then t_1 : Bool, t_2 : R, and t_3 : R.

```
4. If 0 : R, then R = Nat.
```

5. If succ t_1 : R, then R = Nat and t_1 : Nat.

```
6. If pred t_1: R, then R = Nat and t_1: Nat.
```

7. If iszero t_1 : R, then R = Bool and t_1 : Nat.

```
Proof: ...
```

This leads directly to a recursive algorithm for calculating the type of a term...

Typechecking Algorithm

```
typeof(t) = if t = true then Bool
            else if t = false then Bool
            else if t = if t1 then t2 else t3 then
              let T1 = typeof(t1) in
              let T2 = typeof(t2) in
              let T3 = typeof(t3) in
              if T1 = Bool and T2=T3 then T2
              else "not typable"
            else if t = 0 then Nat
            else if t = succ t1 then
              let T1 = typeof(t1) in
              if T1 = Nat then Nat else "not typable"
            else if t = pred t1 then
              let T1 = typeof(t1) in
              if T1 = Nat then Nat else "not typable"
            else if t = iszero t1 then
              let T1 = typeof(t1) in
              if T1 = Nat then Bool else "not typable"
```

Canonical Forms

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type Nat, then v is a numeric value

Canonical Forms

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type Nat, then v is a numeric value

Proof: ...

Theorem: Suppose t is a well-typed term (that is, t : T for some T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Theorem: Suppose t is a well-typed term (that is, t : T for some T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof:

Theorem: Suppose t is a well-typed term (that is, t : T for some T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on a derivation of t : T.

Theorem: Suppose t is a well-typed term (that is, t : T for some T). Then either t is a value or else there is some t' with $t \rightarrow t'$.

```
Proof: By induction on a derivation of t : T.
```

The T-TRUE, T-FALSE, and T-ZERO cases are immediate, since t in these cases is a value.

```
Theorem: Suppose t is a well-typed term (that is, t : T for some T).
Then either t is a value or else there is some t' with t \longrightarrow t'.
```

```
Proof: By induction on a derivation of t : T.
```

The T-TRUE, T-FALSE, and T-ZERO cases are immediate, since t in these cases is a value.

Case T-IF: $t = if t_1 then t_2 else t_3$

 t_1 : Bool t_2 : T t_3 : T

```
Theorem: Suppose t is a well-typed term (that is, t : T for some T).
Then either t is a value or else there is some t' with t \longrightarrow t'.
```

```
Proof: By induction on a derivation of t : T.
```

The T-TRUE, T-FALSE, and T-ZERO cases are immediate, since t in these cases is a value.

```
Case T-IF: t = if t_1 then t_2 else t_3
```

 t_1 : Bool t_2 : T t_3 : T

By the induction hypothesis, either t_1 is a value or else there is some t'_1 such that $t_1 \longrightarrow t'_1$. If t_1 is a value, then the canonical forms lemma tells us that it must be either true or false, in which case either E-IFTRUE or E-IFFALSE applies to t. On the other hand, if $t_1 \longrightarrow t'_1$, then, by E-IF, $t \longrightarrow \text{if } t'_1$ then t_2 else t_3 .

Preservation

Theorem: If t : T and $t \longrightarrow t'$, then t' : T.

Preservation

Theorem: If t : T and $t \longrightarrow t'$, then t' : T.

Proof: ...