
CIS 500

Software Foundations

Fall 2003

15 October

CIS 500, 15 October 1

Plans

Where we’ve been:

� Inductive definitions

� abstract syntax

� inference rules

� Proofs by structural induction

� Operational semantics

� The lambda-calculus

� Typing rules and type soundness

CIS 500, 15 October 2

Plans

Where we’ve been:

� Inductive definitions

� abstract syntax

� inference rules

� Proofs by structural induction

� Operational semantics

� The lambda-calculus

� Typing rules and type soundness

Where we’re going:

� “Simple types” for the lambda-calculus

� Formalizing more features of real-world languages (records, datatypes,
references, exceptions, etc.)

� Subtyping

� Objects

CIS 500, 15 October 2-a

The Simply Typed Lambda-Calculus

CIS 500, 15 October 3

Lambda-calculus with booleans
� ::= terms

� variable
� � � � abstraction

� � application

� � � � constant true

� � 	
 � constant false

� � � � � �
 � � 	
 � � conditional

� ::= values

� � � � abstraction value

� � � � true value

� � 	
 � false value

CIS 500, 15 October 4

“Simple Types”

� ::= types

� � � 	 type of booleans

� � � types of functions

CIS 500, 15 October 5

Typing rules

� � � � � � � � 	 (T-TRUE)

� � 	
 � � � � � 	 (T-FALSE)

� � � � � � 	 � � � � � � � �

� � � � � � �
 � � � 	
 � � � � �

(T-IF)

CIS 500, 15 October 6

Typing rules

� � � � � � � � 	 (T-TRUE)

� � 	
 � � � � � 	 (T-FALSE)

� � � � � � 	 � � � � � � � �

� � � � � � �
 � � � 	
 � � � � �

(T-IF)

� � �

(T-VAR)

CIS 500, 15 October 6-a

Typing rules

� � � � � � � � 	 (T-TRUE)

� � 	
 � � � � � 	 (T-FALSE)

� � � � � � 	 � � � � � � � �

� � � � � � �
 � � � 	
 � � � � �

(T-IF)

� � � � �

� � � � �

(T-VAR)

CIS 500, 15 October 6-b

Typing rules

� � � � � � � � � � 	 (T-TRUE)

� � � � 	
 � � � � � 	 (T-FALSE)

� � � � � � � � 	 � � � � � � � � � � � �

� � � � � � � � �
 � � � 	
 � � � � �

(T-IF)

� � � � �

� � � � �

(T-VAR)

CIS 500, 15 October 6-c

Typing rules

� � � � � � � � � � 	 (T-TRUE)

� � � � 	
 � � � � � 	 (T-FALSE)

� � � � � � � � 	 � � � � � � � � � � � �

� � � � � � � � �
 � � � 	
 � � � � �

(T-IF)

� � � � �

� � � � �

(T-VAR)

� � � � � � � � � � � �

� � � � � � � � � � � � � � � �

(T-ABS)

CIS 500, 15 October 6-d

Typing rules

� � � � � � � � � � 	 (T-TRUE)

� � � � 	
 � � � � � 	 (T-FALSE)

� � � � � � � � 	 � � � � � � � � � � � �

� � � � � � � � �
 � � � 	
 � � � � �

(T-IF)

� � � � �

� � � � �

(T-VAR)

� � � � � � � � � � � �

� � � � � � � � � � � � � � � �

(T-ABS)

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � �

(T-APP)

CIS 500, 15 October 6-e

Typing Derivations

What derivations justify the following typing statements?

� � � � � � � � � 	 � � � � � � � � � � � 	

� � � � � � 	 � � � � 	 � � � � � � � 	
 � � � �
 � � � � � 	
 � � � 	
 � � � � � � 	

� � � � � � 	 � � � � 	 � � � � � � � 	 � � � � � � � � �
 � � 	
 � � 	
 � � � � � � � 	 � � � � 	

CIS 500, 15 October 7

Properties of � �

As before, the fundamental property of the type system we have just

defined is soundness with respect to the operational semantics.

CIS 500, 15 October 8

Properties of � �

As before, the fundamental property of the type system we have just

defined is soundness with respect to the operational semantics.

1. Progress: A closed, well-typed term is not stuck

If � � � � , then either � is a value or else � � � � � for some � � .

2. Preservation: Types are preserved by one-step evaluation

If � � � � � and � � � � � , then � � � � � � .

CIS 500, 15 October 8-a

Proving progress

Same steps as before...

CIS 500, 15 October 9

Proving progress

Same steps as before...

� inversion lemma for typing relation

� canonical forms lemma

� progress theorem

CIS 500, 15 October 9-a

Typing rules again (for reference)

� � � � � � � � � � 	 (T-TRUE)

� � � � 	
 � � � � � 	 (T-FALSE)

� � � � � � � � 	 � � � � � � � � � � � �

� � � � � � � � �
 � � � 	
 � � � � �

(T-IF)

� � � � �

� � � � �

(T-VAR)

� � � � � � � � � � � �

� � � � � � � � � � � � � � � �

(T-ABS)

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � �

(T-APP)

CIS 500, 15 October 10

Inversion

Lemma:

1. If � � � � � � � � , then � � � � � 	 .

2. If � � � � 	
 � � � , then � � � � � 	 .

3. If � � � � � � � � �
 � � � 	
 � � � � � , then � � � � � � � � 	 and

� � � � � � � � � .

CIS 500, 15 October 11

Inversion

Lemma:

1. If � � � � � � � � , then � � � � � 	 .

2. If � � � � 	
 � � � , then � � � � � 	 .

3. If � � � � � � � � �
 � � � 	
 � � � � � , then � � � � � � � � 	 and

� � � � � � � � � .

4. If � � � � � , then

CIS 500, 15 October 11-a

Inversion

Lemma:

1. If � � � � � � � � , then � � � � � 	 .

2. If � � � � 	
 � � � , then � � � � � 	 .

3. If � � � � � � � � �
 � � � 	
 � � � � � , then � � � � � � � � 	 and

� � � � � � � � � .

4. If � � � � � , then � � � � � .

CIS 500, 15 October 11-b

Inversion

Lemma:

1. If � � � � � � � � , then � � � � � 	 .

2. If � � � � 	
 � � � , then � � � � � 	 .

3. If � � � � � � � � �
 � � � 	
 � � � � � , then � � � � � � � � 	 and

� � � � � � � � � .

4. If � � � � � , then � � � � � .

5. If � � � � � � � � � � � � , then

CIS 500, 15 October 11-c

Inversion

Lemma:

1. If � � � � � � � � , then � � � � � 	 .

2. If � � � � 	
 � � � , then � � � � � 	 .

3. If � � � � � � � � �
 � � � 	
 � � � � � , then � � � � � � � � 	 and

� � � � � � � � � .

4. If � � � � � , then � � � � � .

5. If � � � � � � � � � � � � , then � � � � � � � for some � � with

� � � � � � � � � � � � .

CIS 500, 15 October 11-d

Inversion

Lemma:

1. If � � � � � � � � , then � � � � � 	 .

2. If � � � � 	
 � � � , then � � � � � 	 .

3. If � � � � � � � � �
 � � � 	
 � � � � � , then � � � � � � � � 	 and

� � � � � � � � � .

4. If � � � � � , then � � � � � .

5. If � � � � � � � � � � � � , then � � � � � � � for some � � with

� � � � � � � � � � � � .

6. If � � � � � � � � , then

CIS 500, 15 October 11-e

Inversion

Lemma:

1. If � � � � � � � � , then � � � � � 	 .

2. If � � � � 	
 � � � , then � � � � � 	 .

3. If � � � � � � � � �
 � � � 	
 � � � � � , then � � � � � � � � 	 and

� � � � � � � � � .

4. If � � � � � , then � � � � � .

5. If � � � � � � � � � � � � , then � � � � � � � for some � � with

� � � � � � � � � � � � .

6. If � � � � � � � � , then there is some type � � � such that

� � � � � � � � � � and � � � � � � � � .

CIS 500, 15 October 11-f

Canonical Forms

Lemma:

CIS 500, 15 October 12

Canonical Forms

Lemma:

1. If � is a value of type � � � 	 , then

CIS 500, 15 October 12-a

Canonical Forms

Lemma:

1. If � is a value of type � � � 	 , then � is either � � � � or � � 	
 � .

CIS 500, 15 October 12-b

Canonical Forms

Lemma:

1. If � is a value of type � � � 	 , then � is either � � � � or � � 	
 � .

2. If � is a value of type � � � � � , then

CIS 500, 15 October 12-c

Canonical Forms

Lemma:

1. If � is a value of type � � � 	 , then � is either � � � � or � � 	
 � .

2. If � is a value of type � � � � � , then � has the form � � � � � � � � .

CIS 500, 15 October 12-d

Progress

Theorem: Suppose � is a closed, well-typed term (that is, � � � � for

some �). Then either � is a value or else there is some � � with � � � � � .

Proof: By induction

CIS 500, 15 October 13

Progress

Theorem: Suppose � is a closed, well-typed term (that is, � � � � for

some �). Then either � is a value or else there is some � � with � � � � � .

Proof: By induction on typing derivations.

CIS 500, 15 October 13-a

Progress

Theorem: Suppose � is a closed, well-typed term (that is, � � � � for

some �). Then either � is a value or else there is some � � with � � � � � .

Proof: By induction on typing derivations. The cases for boolean

constants and conditions are the same as before. The variable case is

trivial (because � is closed). The abstraction case is immediate, since

abstractions are values.

CIS 500, 15 October 13-b

Progress

Theorem: Suppose � is a closed, well-typed term (that is, � � � � for

some �). Then either � is a value or else there is some � � with � � � � � .

Proof: By induction on typing derivations. The cases for boolean

constants and conditions are the same as before. The variable case is

trivial (because � is closed). The abstraction case is immediate, since

abstractions are values.

Consider the case for application, where � � � � � � with � � � � � � � � � � �

and � � � � � � � .

CIS 500, 15 October 13-c

Progress

Theorem: Suppose � is a closed, well-typed term (that is, � � � � for

some �). Then either � is a value or else there is some � � with � � � � � .

Proof: By induction on typing derivations. The cases for boolean

constants and conditions are the same as before. The variable case is

trivial (because � is closed). The abstraction case is immediate, since

abstractions are values.

Consider the case for application, where � � � � � � with � � � � � � � � � � �

and � � � � � � � . By the induction hypothesis, either � � is a value or else it

can make a step of evaluation, and likewise � � .

CIS 500, 15 October 13-d

Progress

Theorem: Suppose � is a closed, well-typed term (that is, � � � � for

some �). Then either � is a value or else there is some � � with � � � � � .

Proof: By induction on typing derivations. The cases for boolean

constants and conditions are the same as before. The variable case is

trivial (because � is closed). The abstraction case is immediate, since

abstractions are values.

Consider the case for application, where � � � � � � with � � � � � � � � � � �

and � � � � � � � . By the induction hypothesis, either � � is a value or else it

can make a step of evaluation, and likewise � � . If � � can take a step,

then rule E-APP1 applies to � . If � � is a value and � � can take a step,

then rule E-APP2 applies. Finally, if both � � and � � are values, then the

canonical forms lemma tells us that � � has the form � � � � � � � � � � , and so

rule E-APPABS applies to � .

CIS 500, 15 October 13-e

Proving Preservation

Theorem: If � � � � � and � � � � � , then � � � � � � .

Proof: By induction

CIS 500, 15 October 14

Proving Preservation

Theorem: If � � � � � and � � � � � , then � � � � � � .

Proof: By induction on typing derivations.

[Which case is the hard one?]

CIS 500, 15 October 14-a

Proving Preservation

Theorem: If � � � � � and � � � � � , then � � � � � � .

Proof: By induction on typing derivations.

[Which case is the hard one?]

Case T-APP: Given � � � � � �

� � � � � � � � � � � �

� � � � � � � �

� � � � �

Show � � � � � � � �

CIS 500, 15 October 14-b

Proving Preservation

Theorem: If � � � � � and � � � � � , then � � � � � � .

Proof: By induction on typing derivations.

[Which case is the hard one?]

Case T-APP: Given � � � � � �

� � � � � � � � � � � �

� � � � � � � �

� � � � �

Show � � � � � � � �

By the inversion lemma for evaluation, there are three subcases...

CIS 500, 15 October 14-c

Proving Preservation

Theorem: If � � � � � and � � � � � , then � � � � � � .

Proof: By induction on typing derivations.

[Which case is the hard one?]

Case T-APP: Given � � � � � �

� � � � � � � � � � � �

� � � � � � � �

� � � � �

Show � � � � � � � �
By the inversion lemma for evaluation, there are three subcases...

Subcase: � � � � � � � � � � � � �

� � a value � �

�
�
�

� � �� � � � � � �

CIS 500, 15 October 14-d

Proving Preservation

Theorem: If � � � � � and � � � � � , then � � � � � � .

Proof: By induction on typing derivations.

[Which case is the hard one?]

Case T-APP: Given � � � � � �

� � � � � � � � � � � �

� � � � � � � �

� � � � �

Show � � � � � � � �

By the inversion lemma for evaluation, there are three subcases...

Subcase: � � � � � � � � � � � � �

� � a value � �

�
�
�

� � �� � � � � � �

Uh oh.

CIS 500, 15 October 14-e

The “Substitution Lemma”

Lemma: Types are preserved under substitition.

If � � � � � � � � � and � �
 � � , then � � � � ��
 � � � � .

CIS 500, 15 October 15

The “Substitution Lemma”

Lemma: Types are preserved under substitition.

If � � � � � � � � � and � �
 � � , then � � � � ��
 � � � � .

Proof: ...

CIS 500, 15 October 15-a

Preservation

Homework: Complete the proof of preservation

CIS 500, 15 October 16

Discussion

CIS 500, 15 October 17

Intro vs. elim forms

An introduction form for a given type gives us a way of constructing

elements of this type.

An elimination form for a type gives us a way of using elements of this

type.

CIS 500, 15 October 18

The Curry-Howard Correspondence

In constructive logics, a proof of � must provide evidence for � .

� “law of the excluded middle” — � � � � — not recognized.

A proof of � � � is a pair of evidence for � and evidence for � .

A proof of � � � is a procedure for transforming evidence for � into

evidence for � .

CIS 500, 15 October 19

Propositions as Types

LOGIC PROGRAMMING LANGUAGES

propositions types

proposition � � � type � � �

proposition � � � type � � �

proof of proposition � term � of type�

proposition � is provable type � is inhabited (by some term)

CIS 500, 15 October 20

Propositions as Types

LOGIC PROGRAMMING LANGUAGES

propositions types

proposition � � � type � � �

proposition � � � type � � �

proof of proposition � term � of type�

proposition � is provable type � is inhabited (by some term)

evaluation

CIS 500, 15 October 20-a

Propositions as Types

LOGIC PROGRAMMING LANGUAGES

propositions types

proposition � � � type � � �

proposition � � � type � � �

proof of proposition � term � of type�

proposition � is provable type � is inhabited (by some term)

proof simplification evaluation

(a.k.a. “cut elimination”)

CIS 500, 15 October 20-b

Erasure

erase � � � � �

erase � � � � � � � � � � � � � � erase � � � �

erase � � � � � � � erase � � � � erase � � � �

CIS 500, 15 October 21

Typability

An untyped � -term � is said to be typable if there is some term � in the

simply typed lambda-calculus, some type � , and some context � such

that erase � � � � � and � � � � � .

Cf. type reconstruction in OCaml.

CIS 500, 15 October 22

On to real programming languages...

CIS 500, 15 October 23

Base types

Up to now, we’ve formulated “base types” (e.g. � � �) by adding them to

the syntax of types, extending the syntax of terms with associated

constants (� � � �) and operators (
 � � � , etc.) and adding appropriate typing

and evaluation rules. We can do this for as many base types as we like.

For more theoretical discussions (as opposed to programming) we can

often ignore the term-level inhabitants of base types, and just treat these

types as uninterpreted constants.

E.g., suppose � and � are some base types. Then we can ask (without

knowing anything more about � or �) whether there are any types � and

� such that the term

� � � � 	
 � � � �
 � �
 � � � � �
 �

is well typed.

CIS 500, 15 October 24

The � � � � type

� ::= ... terms

�
 � � constant �
 � �

� ::= ... values

�
 � � constant � � � �

� ::= ... types
�
 � � unit type

New typing rules � � � � �

� � �
 � � � �
 � � (T-UNIT)

CIS 500, 15 October 25

Sequencing
� ::= ... terms

� � � � �

CIS 500, 15 October 26

Sequencing

� ::= ... terms

� � � � �

� � � � �
�
�

� � � � � � � �
�
� � � �

(E-SEQ)

�
 � � � � � � � � � (E-SEQNEXT)

� � � � � �
 � � � � � � � � �

� � � � � � � � � �

(T-SEQ)

CIS 500, 15 October 26-a

Derived forms

� Syntatic sugar

� Internal language vs. external (surface) language

CIS 500, 15 October 27

Sequencing as a derived form

� � � � �

def

� � � � � �
 � � � � � � � �

where � �� FV � � � �

CIS 500, 15 October 28

Equivalence of the two definitions

[board]

CIS 500, 15 October 29

Ascription

New syntactic forms

� ::= ... terms

� �
 � ascription

New evaluation rules � � � � �

� � �
 � � � � � (E-ASCRIBE)

� � � � �
�
�

� � �
 � � � �
�
� �
 �

(E-ASCRIBE1)

New typing rules � � � � �

� � � � � �

� � � � �
 � � �

(T-ASCRIBE)

CIS 500, 15 October 30

Ascription as a derived form

� �
 �

def

� � � � � � � � � �

CIS 500, 15 October 31

Let-bindings

New syntactic forms

� ::= ... terms

	 � � � � � �
 � let binding

New evaluation rules � � � � �

	 � � � � � � �
 � � � � � � �� � � � � � (E-LETV)

� � � � �
�
�

	 � � � � � � �
 � � � � 	 � � � � �
�
� �
 � �

(E-LET)

New typing rules � � � � �

� � � � � � � � � � � � � � � � � � �

� � 	 � � � � � � �
 � � � � �

(T-LET)

CIS 500, 15 October 32

Pairs
� ::= ... terms

� � � � � pair
� � � first projection

� � � second projection

� ::= ... values

� � � � � pair value

� ::= ... types

� � � � � product type

CIS 500, 15 October 33

Evaluation rules for pairs

� � � � � � � � � � � � � (E-PAIRBETA1)

� � � � � � � � � � � � � (E-PAIRBETA2)

� � � � �
�
�

� � � � � � �
�
� � �

(E-PROJ1)

� � � � �
�
�

� � � � � � �
�
� � �

(E-PROJ2)

� � � � �
�
�

� � � � � � � � � � �
�
� � � � �

(E-PAIR1)

� � � � �
�
�

� � � � � � � � � � � � � �
�
� �

(E-PAIR2)

CIS 500, 15 October 34

Typing rules for pairs

� � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

(T-PAIR)

� � � � � � � � � � � �

� � � � � � � � � �

(T-PROJ1)

� � � � � � � � � � � �

� � � � � � � � � �

(T-PROJ2)

CIS 500, 15 October 35

Tuples

� ::= ... terms

� � �
	
 1 � � �
� tuple

� � � projection

� ::= ... values

� � �
	
 1 � � �
� tuple value

� ::= ... types
� � �
	
 1 � � �
� tuple type

CIS 500, 15 October 36

Evaluation rules for tuples

� � �
	
 1 � � �
� � � � � � � (E-PROJTUPLE)

� � � � �
�
�

� � � � � � �
�
� � �

(E-PROJ)

� �
� � �
�
�

� � �
	
 1 � � � � 1
� � � � � �
�
 � � 1 � � �
�

� � � � �
	
 1 � � � � 1

� �
�
� �
� �
�
 � � 1 � � �
�

(E-TUPLE)

CIS 500, 15 October 37

Typing rules for tuples

for each � � � � � � � �

� � � � �
	
 1 � � �
� � � � �
	
 1 � � �
�

(T-TUPLE)

� � � � � � � �
	
 1 � � �
�

� � � � � � � � �

(T-PROJ)

CIS 500, 15 October 38

Records

� ::= ... terms

� 	 � � � �
	
 1 � � �
� record

� � 	 projection

� ::= ... values

� 	 � � � �
	
 1 � � �
� record value

� ::= ... types

� 	 � � � �
	
 1 � � �
� type of records

CIS 500, 15 October 39

Evaluation rules for records

� 	 � � � �
	
 1 � � �
� � 	 � � � � � (E-PROJRCD)

� � � � �
�
�

� � � 	 � � �
�
� � 	

(E-PROJ)

� � � � �
�
�

� 	 � � � �
	
 1 � � � � 1

� 	 � � � � � 	 � � � �
�
 � � 1 � � �
�

� � � 	 � � � �
	
 1 � � � � 1

� 	 � � �
�
� �
	 � � � �
�
 � � 1 � � �
�

(E-RCD)

CIS 500, 15 October 40

Typing rules for records

for each � � � � � � � �

� � � 	 � � � �
	
 1 � � �
� � � 	 � � � �
	
 1 � � �
�

(T-RCD)

� � � � � � 	 � � � �
	
 1 � � �
�

� � � � � 	 � � � �

(T-PROJ)

CIS 500, 15 October 41

