

$$
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{2}}{\Gamma \vdash \operatorname{inr} \mathrm{t}_{1}: \mathrm{T}_{1}+\mathrm{T}_{2}}
$$

$$
\Gamma \vdash \mathrm{t}_{0}: \mathrm{T}_{1}+\mathrm{T}_{2}
$$

$$
\Gamma, \mathrm{x}_{1}: \mathrm{T}_{1} \vdash \mathrm{t}_{1}: \mathrm{T} \quad \Gamma, \mathrm{x}_{2}: \mathrm{T}_{2} \vdash \mathrm{t}_{2}: \mathrm{T}
$$

$$
\Gamma \vdash \text { case } t_{0} \text { of inl } \mathrm{x}_{1} \Rightarrow \mathrm{t}_{1} \mid \text { inr } \mathrm{x}_{2} \Rightarrow \mathrm{t}_{2}: \mathrm{T}
$$

New evaluation rules

$$
\begin{array}{cc}
\begin{array}{c}
\text { case (inl } \mathrm{v}_{0} \text {) } \\
\text { of inl } \mathrm{x}_{1} \Rightarrow \mathrm{t}_{1} \mid \text { inr } \mathrm{x}_{2} \Rightarrow \mathrm{t}_{2}
\end{array} & \text { (E-CASEINL) } \\
\longrightarrow\left[\mathrm{x}_{1} \mapsto \mathrm{v}_{0}\right] \mathrm{t}_{1}
\end{array} \quad \begin{gathered}
\text { (E-CASEINR) } \\
\text { case (inr } \mathrm{v}_{0} \text {) } \\
\text { of inl } \mathrm{x}_{1} \Rightarrow \mathrm{t}_{1} \mid \text { inr } \mathrm{x}_{2} \Rightarrow \mathrm{t}_{2} \\
\longrightarrow\left[\mathrm{x}_{2} \mapsto \mathrm{v}_{0}\right] \mathrm{t}_{2} \\
\mathrm{t}_{0} \longrightarrow \mathrm{t}_{0}^{\prime}
\end{gathered} \quad \begin{gathered}
\text { (E-CASE) } \\
\begin{array}{c}
\text { case } \mathrm{t}_{0} \text { of inl } \mathrm{x}_{1} \Rightarrow \mathrm{t}_{1} \mid \text { inr } \mathrm{x}_{2} \Rightarrow \mathrm{t}_{2} \\
\longrightarrow \text { case } \mathrm{t}_{0}^{\prime} \text { of inl } \mathrm{x}_{1} \Rightarrow \mathrm{t}_{1} \mid \text { inr } \mathrm{x}_{2} \Rightarrow \mathrm{t}_{2}
\end{array}
\end{gathered}
$$

Sums and Uniqueness of Types

Problem:

If t has type T, then inl t has type $T+U$ for every U.
l.e., we've lost uniqueness of types.

Possible solutions:

- "Infer" U as needed during typechecking
- Give constructors different names and only allow each name to appear in one sum type (requires generalization to "variants," which we'll see next) - OCaml's solution
- Annotate each inl and inr with the intended sum type.

For simplicity, let's choose the third.

Evaluation rules ignore annotations:	$\mathrm{t} \longrightarrow \mathrm{t}^{\prime}$
$\begin{aligned} & \text { case (inl vo as } T_{0} \text {) } \\ & \text { of inl } x_{1} \Rightarrow t_{1} \mid \text { inr } x_{2} \Rightarrow t_{2} \\ & \quad \longrightarrow\left[x_{1} \mapsto v_{0}\right]_{1} \end{aligned}$	(E-CASEINL)
$\begin{aligned} & \text { case (inr } \mathrm{v}_{0} \text { as } \mathrm{T}_{0} \text {) } \\ & \text { of inl } \mathrm{x}_{1} \Rightarrow \mathrm{t}_{1} \quad \mid \operatorname{inr} \mathrm{x}_{2} \Rightarrow \mathrm{t}_{2} \\ & \quad \longrightarrow\left[\mathrm{x}_{2} \mapsto \mathrm{v}_{0}\right] \mathrm{t}_{2} \end{aligned}$	(E-CASEINR)
$\mathrm{t}_{1} \longrightarrow \mathrm{t}_{1}{ }^{\text {a }}$	
inl t_{1} as $\mathrm{T}_{2} \longrightarrow$ inl t_{1}^{\prime} as T_{2}	
$\mathrm{t}_{1} \longrightarrow \mathrm{t}_{1}{ }^{\prime}$	
$\mathrm{inr} \mathrm{t}_{1}$ as $\mathrm{T}_{2} \longrightarrow \mathrm{inr} \mathrm{t}_{1}^{\prime}$ as T_{2}	

$$
\begin{gathered}
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{1}}{\Gamma \vdash \operatorname{inl} \mathrm{t}_{1} \text { as } \mathrm{T}_{1}+\mathrm{T}_{2}: \mathrm{T}_{1}+\mathrm{T}_{2}} \\
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{2}}{\Gamma \vdash \operatorname{inr} \mathrm{t}_{1} \text { as } \mathrm{T}_{1}+\mathrm{T}_{2}: \mathrm{T}_{1}+\mathrm{T}_{2}}
\end{gathered}
$$

Variants

Just as we generalized binary products to labeled records, we can generalize binary sums to labeled variants.

New evaluation rules

$\frac{t_{0} \longrightarrow t_{0}^{\prime}}{\text { case } t_{0} \text { of }\left\langle l_{i}=x_{i}\right\rangle \Rightarrow t_{i}{ }^{i \in 1 \ldots n}}$
\longrightarrow case t_{0}^{\prime} of $\left\langle l_{i}=x_{i}\right\rangle \Rightarrow t_{i}{ }^{i \in 1 \ldots n}$

$$
\frac{t_{i} \longrightarrow t_{i}^{\prime}}{\left\langle l_{i}=t_{i}\right\rangle \text { as } T \longrightarrow\left\langle l_{i}=t_{i}^{\prime}\right\rangle \text { as } T}
$$

(E-VARIANT)

Example

Addr $=$ <physical:PhysicalAddr, virtual:VirtualAddr>;
a = <physical=pa> as Addr;
getName $=\lambda a: A d d r$.
case a of
<physical=x> \Rightarrow x.firstlast
| <virtual=y> \Rightarrow y.name;

Options

Just like in OCaml...

OptionalNat $=$ <none:Unit, some:Nat>;

Table $=$ Nat \rightarrow OptionalNat;
emptyTable $=\lambda$ n: Nat. <none=unit> as OptionalNat;
extendTable $=$
$\lambda t: T a b l e . \lambda m: N a t . \lambda v: N a t$.

$\lambda \mathrm{n}$:Nat.

if equal n m then <some=v> as OptionalNat else t n ;
$x=$ case $t(5)$ of
<none=u> $\Rightarrow 999$
| <some=v> $\Rightarrow \mathrm{v}$;

Terminology: "Union Types"

$\mathrm{T}_{1}+\mathrm{T}_{2}$ is a disjoint union of T_{1} and T_{2} (the tags inl and inr ensure disjointness)
(We could also consider a non-disjoint union $T_{1} \vee T_{2}$, but its properties are substantially more complex, because it induces an interesting subtype relation. We'll come back to subtyping later.)

Enumerations

Weekday $=$ <monday:Unit, tuesday:Unit, wednesday:Unit, thursday:Unit, friday:Unit>;
nextBusinessDay $=\lambda_{\mathrm{w}}$: Weekday.
case w of <monday=x> $\quad \Rightarrow$ <tuesday=unit> as Weekday
| <tuesday=x> \Rightarrow <wednesday=unit> as Weekday
| <wednesday=x> \Rightarrow <thursday=unit> as Weekday
| <thursday=x> \Rightarrow <friday=unit> as Weekday
| <friday=x> \Rightarrow <monday=unit> as Weekday;

CIS 500, 20-22 October

Recursion

Recursion in λ_{\rightarrow}

- In $\lambda_{\rightarrow \text {, all programs terminate. (Cf. Chapter 12.) }}$
- Hence, untyped terms like omega and fix are not typable.
- But we can extend the system with a (typed) fixed-point operator...

New syntactic forms

terms

fixed point of t

New evaluation rules

$$
\begin{gather*}
\text { fix }\left(\lambda \mathrm{x}: \mathrm{T}_{1} \cdot \mathrm{t}_{2}\right) \\
\longrightarrow\left[\mathrm { x } \mapsto \left(\mathrm{fix}^{\left.\left.\left(\lambda \mathrm{x}: \mathrm{T}_{1} \cdot \mathrm{t}_{2}\right)\right)\right] \mathrm{t}_{2}}\right.\right. \\
\frac{\mathrm{t}_{1} \longrightarrow \mathrm{t}_{1}^{\prime}}{\mathrm{fix}^{\mathrm{t}_{1}} \longrightarrow \mathrm{fix} \mathrm{t}_{1}^{\prime}}
\end{gather*}
$$

Example

$\mathrm{ff}=\lambda_{\mathrm{ie}}:$ Nat \rightarrow Bool.

$\lambda \mathrm{x}$:Nat.
if iszero x then true
else if iszero (pred x) then false
else ie (pred (pred x));
iseven = fix ff;
iseven 7;

A more convenient form

letrec $x: T_{1}=t_{1}$ in $t_{2} \stackrel{\text { def }}{=}$ let $x=f i x\left(\lambda x: T_{1} \cdot t_{1}\right)$ in t_{2} letrec iseven : Nat \rightarrow Bool $=$
$\lambda \mathrm{x}$:Nat.
if iszero x then true
else if iszero (pred x) then false
else iseven (pred (pred x))
in
iseven 7;

head [S] (cons[T] $\mathrm{v}_{1} \mathrm{~V}_{2}$) $\longrightarrow \mathrm{v}_{1}$

$$
\begin{gathered}
\frac{\mathrm{t}_{1} \longrightarrow \mathrm{t}_{1}^{\prime}}{\text { head[T] } \mathrm{t}_{1} \longrightarrow \text { head[T] } \mathrm{t}_{1}^{\prime}} \\
\text { tail[S] (cons[T] } \left.\mathrm{v}_{1} \mathrm{v}_{2}\right) \longrightarrow \mathrm{v}_{2}
\end{gathered}
$$

$$
\mathrm{t}_{1} \longrightarrow \mathrm{t}_{1}^{\prime}
$$

$$
\operatorname{tail}[\mathrm{T}] \mathrm{t}_{1} \longrightarrow \text { tail }[\mathrm{T}] \mathrm{t}_{1}^{\prime}
$$

Note that evaluation rules do not look at type annotations!
(E-HEADCONS)
(E-HEAD)
(E-TAILCONS)
(E-TAIL)

