
CIS 500

Software Foundations

Fall 2003

20–22 October

CIS 500, 20–22 October 1

Sums

CIS 500, 20–22 October 2

Sums – motivating example
� � � � � � � � � 	 	
 � �
 �
 � � � � � � � � �
 � � � � � 	 	
 � � �
 � � � �

� �
 � � � � � 	 	
 � � � � � � � � �
 � � � � � � � � � � � �
 � � � �

� 	 	
 � � � � � � � � � � 	 	
 � � �
 � � � � � 	 	

� � � � “ � � � � � � � � � 	 	
 � � � � � � � � � � 	 	
 � � �
 � � � � � 	 	
 ”

� �
 � “ � �
 � � � � � 	 	
 � � � � � � � � � � 	 	
 � � �
 � � � � � 	 	
 ”

� � � � ! � " # $ % & & ' (

) * � + ,

- . / 0 1 0 (, - ' * � / * �

2 - . ' 3 1 3 (. ! � 4

CIS 500, 20–22 October 3

New syntactic forms
� ::= ... terms

� � � � tagging (left)
� �
 � tagging (right)

� � � � � �
 � � � � � � � � �
 � � � case

� ::= ... values

� � � � tagged value (left)

� �
 � tagged value (right)

� ::= ... types

� � � sum type

CIS 500, 20–22 October 4

New typing rules � � � � �

� � � � � � �

� � � � � � � � � � � � �

(T-INL)

� � � � � � �

� � � �
 � � � � � � � �

(T-INR)

� � � � � � � � � �

� �

� � � � � � � � �
 � � � � � � � � � � �
 � � � � � � �

(T-CASE)

CIS 500, 20–22 October 5

New evaluation rules � � � ��

� � � � � � � � � � �

�
 � � � � � � � � � � �
 � � � � �

� � � � � �� � � � � �

(E-CASEINL)

� � � � � � �
 � � �

�
 � � � � � � � � � � �
 � � � � �

� � � � � �� � � � � �

(E-CASEINR)

� � � � � � �

� � � � � � �
 � � � � � � � � � � �
 � � � � �

� � � � � � �
�

� �
 � � � � � � � � � � �
 � � � � �

(E-CASE)

CIS 500, 20–22 October 6

� � � � �
�

�

� � � � � � � � � � �� �

(E-INL)

� � � � � � �

� �
 � � � � � �
 �� �

(E-INR)

CIS 500, 20–22 October 7

Sums and Uniqueness of Types

Problem:

If � has type � , then � � � � has type � � � for every � .

I.e., we’ve lost uniqueness of types.

Possible solutions:

� “Infer” � as needed during typechecking

� Give constructors different names and only allow each name to

appear in one sum type (requires generalization to “variants,” which

we’ll see next) — OCaml’s solution

� Annotate each � � � and � �
 with the intended sum type.

For simplicity, let’s choose the third.

CIS 500, 20–22 October 8

New syntactic forms
� ::= ... terms

� � � � � � � tagging (left)
� �
 � � � � tagging (right)

� ::= ... values

� � � � � � � tagged value (left)

� �
 � � � � tagged value (right)

CIS 500, 20–22 October 9

New typing rules � � � � �

� � � � � � �

� � � � � � � � � � � � � � � � � � � �

(T-INL)

� � � � � � �

� � � �
 � � � � � � � � � � � � � � �

(T-INR)

CIS 500, 20–22 October 10

Evaluation rules ignore annotations: � � � �
�

� � � � � � � � � � � � � � �

�
 � � � � � � � � � � �
 � � � � �

� � � � � �� � � � � �

(E-CASEINL)

� � � � � � �
 � � � � � � �

�
 � � � � � � � � � � �
 � � � � �

� � � � � �� � � � � �

(E-CASEINR)

� � � � � � �

� � � � � � � � � � � � � � �� � � � � �

(E-INL)
� � � � �
�

�

� �
 � � � � � � � � � �
 �� � � � � �

(E-INR)

CIS 500, 20–22 October 11

Variants

Just as we generalized binary products to labeled records, we can

generalize binary sums to labeled variants.

CIS 500, 20–22 October 12

New syntactic forms
� ::= ... terms

� � � � � � � � tagging
� � � � � �
 � � � � � � � � � �
� � 1 � � � case

� ::= ... types

� � � � � �
� � 1 � � �
� type of variants

CIS 500, 20–22 October 13

New evaluation rules � � � �
�

� � � � � � �
�

� �
�

� � � � � �
 � � � � � � � � � �
� � 1 � � �

� � � �
�

�� �
�

� �
�

(E-CASEVARIANT)

� � � � � � �

� � � � � � �
 � � � � � � � � � �
� � 1 � � �

� � � � � � �� � �
 � � � � � � � � � �
� � 1 � � �

(E-CASE)

� � � � �� �

� � � � � � � � � � � � � � � � �
�

�
� � � �

(E-VARIANT)

CIS 500, 20–22 October 14

New typing rules � � � � �

� � �
�

� �
�

� � � �
�

� �
�

� � � � � � � � �
� � 1 � � �
� � � � � � � �
� � 1 � � �
�

(T-VARIANT)

� � � � � � � � � � �
� � 1 � � �
�

for each � � � � � � � � � � � � �

� � � � � � � � �
 � � � � � � � � � �
� � 1 � � � � �

(T-CASE)

CIS 500, 20–22 October 15

Example
% & & ' " �
� � 3 * -) / $ � � 3 * -) / % & & ' � � - ' � � / $ � - ' � � / % & & ' � 4

 " �
� � 3 * -) / " � � * % & & ' 4

� � � � ! � " # $ % & & ' (

) * � + ,

�
� � 3 * -) / " 0 � 1 0 (, - ' * � / * �

2 � � - ' � � / " 3 � 1 3 (. ! � 4

CIS 500, 20–22 October 16

Options

Just like in OCaml...
� � � - + . / � � " � . + . � $ � . - � � * + ! � $ � � � 4

� � / � " � � � � � � - + . / � � 4

� ! � � 3 � � / � " # . $ � � (� . + . � " � . - � � * � � � - + . / � � 4

� 0 � � . & � � / � "

� $ � � / � (# ! $ � � (# � $ � � (

. $ � � (

- , � � � / . ! � � � . � * + ! � " � � * � � � - + . / � �

� / * � � . 4

0 ") * � � � � � + ,

� . + . � " � � 1 	 	 	

2 � * + ! � " � � 1 � 4

CIS 500, 20–22 October 17

Enumerations
� � � � & 3 " � ! + . & 3 $ � . - � � � � � * & 3 $ � . - � � � � & . � * & 3 $ � . - � �

� � � ' * & 3 $ � . - � � , ' - & 3 $ � . - � � 4

. � 0 � � � * - . � * * � 3 " # � $ � � � � & 3 (

) * � � + , � ! + . & 3 " 0 � 1 � � � � * & 3 " � . - � � * � � � � & 3

2 � � � � * & 3 " 0 � 1 � � � & . � * & 3 " � . - � � * � � � � & 3

2 � � � & . � * & 3 " 0 � 1 � � � � ' * & 3 " � . - � � * � � � � & 3

2 � � � � ' * & 3 " 0 � 1 � , ' - & 3 " � . - � � * � � � � & 3

2 � , ' - & 3 " 0 � 1 � ! + . & 3 " � . - � � * � � � � & 3 4

CIS 500, 20–22 October 18

Terminology: “Union Types”
� � � � � is a disjoint union of � � and � � (the tags � � � and � �
 ensure

disjointness)

(We could also consider a non-disjoint union � � � � � , but its properties

are substantially more complex, because it induces an interesting subtype

relation. We’ll come back to subtyping later.)

CIS 500, 20–22 October 19

Recursion

CIS 500, 20–22 October 20

Recursion in � �

� In � � , all programs terminate. (Cf. Chapter 12.)

� Hence, untyped terms like � � � � � and
 � � are not typable.

� But we can extend the system with a (typed) fixed-point operator...

CIS 500, 20–22 October 21

Example
, , " # - � $ � � � � + + / (

0 $ � � (

- , - * � � ' + 0 � � � . � ' � �

� / * � - , - * � � ' + � � ' � & 0 � � � � . , / * �

� / * � - � � � ' � & � � ' � & 0 � � 4

- * � � � . " , - 0 , , 4

- * � � � . � 4

CIS 500, 20–22 October 22

New syntactic forms
� ::= ... terms

 � � � fixed point of �

New evaluation rules � � � ��

 � � � � � � � � � � � �

� � � � �� �
 � � � � � � � � � � � � � � � �

(E-F IXBETA)

� � � � � � �

 � � � � � �
 � � �� �

(E-F IX)

CIS 500, 20–22 October 23

New typing rules � � � � �

� � � � � � � � � �

� �
 � � � � � � �

(T-F IX)

CIS 500, 20–22 October 24

A more convenient form

� � �
 � � � � � � � � � � � � �

def

� � � � � �
 � � � � � � � � � � � � � � � �

/ � � ' �) - * � � � . $ � � � � + + / "

0 $ � � (

- , - * � � ' + 0 � � � . � ' � �

� / * � - , - * � � ' + � � ' � & 0 � � � � . , / * �

� / * � - * � � � . � � ' � & � � ' � & 0 � �

- .
- * � � � . � 4

CIS 500, 20–22 October 25

Lists

CIS 500, 20–22 October 26

Lists — syntax
� ::= ... terms

� � � � � � empty list
� � � � � � � � � list constructor

� � � � � � � � � test for empty list

� � � 	 � � � � head of a list

� � � � � � � � tail of a list

� ::= ... values

� � � � � � empty list

� � � � � � � � � list constructor

� ::= ... types

� � � � � type of lists

CIS 500, 20–22 October 27

Lists — evaluation

� � � � � � �

� �� � � �

(E-CONS1)

� � � � � � �

� �� �

(E-CONS2)
� � � � � � � � � � � � � � � � � � �
 � � (E-ISNILN IL)

�
 � � � � (E-ISNILCONS)
� � � � � � �

� �� �

(E-ISNIL)

CIS 500, 20–22 October 28

� � � 	 � (E-HEADCONS)

� � � � �
�

�

� � � 	 � � � � � � � � � � 	 � � � �� �

(E-HEAD)

� (E-TAILCONS)

� � � � �
�

�

� � � � � � � � � � � � � � � � � � �� �

(E-TAIL)

Note that evaluation rules do not look at type annotations!

CIS 500, 20–22 October 29

Lists — typing

� � � � � � � � � � � � � � � � (T-N IL)

� � � � � � � � � � � � � � � � � �

� �

(T-CONS)

� � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

(T-ISNIL)
� � � � � � � � � � � �

� � � � � 	 � � � � � � � � � � �

(T-HEAD)

� � � � � � � � � � � �

� �

(T-TAIL)

CIS 500, 20–22 October 30

