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Sums – motivating example
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New syntactic forms
� ::= ... terms

� � � � tagging (left)
� � 
 � tagging (right)
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 � � � case

� ::= ... values

� � � � tagged value (left)
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 � tagged value (right)

� ::= ... types

� � � sum type
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Sums and Uniqueness of Types

Problem:

If � has type � , then � � � � has type � � � for every � .

I.e., we’ve lost uniqueness of types.

Possible solutions:

� “Infer” � as needed during typechecking

� Give constructors different names and only allow each name to

appear in one sum type (requires generalization to “variants,” which

we’ll see next) — OCaml’s solution

� Annotate each � � � and � � 
 with the intended sum type.

For simplicity, let’s choose the third.
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New syntactic forms
� ::= ... terms

� � � � � � � tagging (left)
� � 
 � � � � tagging (right)

� ::= ... values

� � � � � � � tagged value (left)

� � 
 � � � � tagged value (right)

CIS 500, 20–22 October 9



New typing rules � � � � �
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Evaluation rules ignore annotations: � � � �
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Variants

Just as we generalized binary products to labeled records, we can

generalize binary sums to labeled variants.

CIS 500, 20–22 October 12



New syntactic forms
� ::= ... terms
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Options

Just like in OCaml...
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Enumerations
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Terminology: “Union Types”
� � � � � is a disjoint union of � � and � � (the tags � � � and � � 
 ensure

disjointness)

(We could also consider a non-disjoint union � � � � � , but its properties

are substantially more complex, because it induces an interesting subtype

relation. We’ll come back to subtyping later.)
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Recursion
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Recursion in � �

� In � � , all programs terminate. (Cf. Chapter 12.)

� Hence, untyped terms like � � � � � and 
 � � are not typable.

� But we can extend the system with a (typed) fixed-point operator...
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New syntactic forms
� ::= ... terms
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New evaluation rules � � � ��
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New typing rules � � � � �
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A more convenient form
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Lists
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Lists — syntax
� ::= ... terms

� � � � � � empty list
� � � � � � � � � list constructor

� � � � � � � � � test for empty list

� � � 	 � � � � head of a list

� � � � � � � � tail of a list

� ::= ... values

� � � � � � empty list

� � � � � � � � � list constructor

� ::= ... types

� � � � � type of lists
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Lists — evaluation
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Note that evaluation rules do not look at type annotations!
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Lists — typing
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