
CIS 500

Software Foundations

Fall 2003

22 October

CIS 500, 22 October 1

References

CIS 500, 22 October 2

Mutability

� In most programming languages, variables are mutable — i.e., a

variable provides both

� a name that refers to a previously calculated value, and

� the possibility of overwriting this value with another (which will be

referred to by the same name)

� In some languages (e.g., OCaml), these two features are kept separate

� variables are only for naming — the binding between a variable

and its value is immutable

� introduce a new class of mutable values (called reference cells or

references)

� at any given moment, a reference holds a value (and can be

dereferenced to obtain this value)

� a new value may be assigned to a reference

CIS 500, 22 October 3

We choose OCaml’s style, which is easier to work with formally.

So a variable of type � in most languages (except OCaml) will correspond

to a � � � � (actually, a � � � � � � 	
 � � �) here.

CIS 500, 22 October 4

Basic Examples
� � � � � �

� �
� � � �

� � � � 	
 � � � � � � � � �

� � � � 	
 � � � � � � � � � 	
 � � � � � � � � � 	
 � � � � � � � � � 	
 � � � � � � � � �

CIS 500, 22 October 5

Basic Examples

� � � � � �

� �
� � � �

� � � � 	
 � � � � � � � � �

� � � � 	
 � � � � � � � � � 	
 � � � � � � � � � 	
 � � � � � � � � � 	
 � � � � � � � � �

i.e.,

� � � � � � � 	
 � � � � � � � � � 	
 � � � � � � � � � � 	
 � � � � � � � � � � 	
 � � � � � � � � � �

CIS 500, 22 October 5-a

Aliasing

A value of type � � � � is a pointer to a cell holding a value of type � .

r =

5

If this value is “copied” by assigning it to another variable, the cell

pointed to is not copied.

r =

5

s =

So we can change � by assigning to � :

� 	 � � � � � �

CIS 500, 22 October 6

Aliasing all around us

Reference cells are not the only language feature that introduces the

possibility of aliasing.

� arrays

� communication channels

� I/O devices (disks, etc.)

CIS 500, 22 October 7

The difficulties of aliasing

The possibility of aliasing invalidates all sorts of useful forms of reasoning

about programs, both by programmers...

The function

� � � � � � � � 	 � � � � � � � � � 	 � �� � � � � � � � � � 	�

always returns � unless� and � are aliases for the same cell.

...and by compilers:

Code motion out of loops, common subexpression elimination,

allocation of variables to registers, and detection of uninitialized

variables all depend upon the compiler knowing which objects a

load or a store operation could reference.

High-performance compilers spend significant energy on alias analysis to

try to establish when different variables cannot possibly refer to the

same storage.

CIS 500, 22 October 8

The benefits of aliasing

The problems of aliasing have led some language designers simply to

disallow it (e.g., Haskell).

But there are good reasons why most languages do provide constructs

involving aliasing:

� efficiency (e.g., arrays)

� “action at a distance” (e.g., symbol tables)

� shared resources (e.g., locks) in concurrent systems

� etc.

CIS 500, 22 October 9

Example

 � � � � �

 �

 � � � � �
 	 � �
 � � � �

 � 	
 � 	

� �

 � � � � �
 	 � �
 � � � � � � � 	
 � 	

 �

 � �
 	

� �

 � �
 	

� � �
 �
 �

 � � � � �

 �

CIS 500, 22 October 10

� � 	 � � �
 � � � 	 � � �

� � � �
 	 �

� � 	
 � � � � �
 �

� � 	
 �

 � � � � �
 	 � �
 � � � �

 � 	
 � 	

 �

� � 	 � �

 � � � � �
 	 � �
 � � � � � � � 	
 � 	

 �

� � 	 � � �
 �
 �

 � � � � �

 �
 �

�

CIS 500, 22 October 11

Syntax
	 ::= terms

� �
 	 unit constant
� variable

� � �� � 	 abstraction

	 	 application

� � � 	 reference creation

	 	 dereference

	 � � 	 assignment

... plus other familiar types, in examples.

CIS 500, 22 October 12

Typing Rules

� � 	 � � � �

� � � � � 	 � � � � � � �

(T-REF)

� � 	 � � � � � � �

� � 	 	 � � � �

(T-DEREF)

� � 	 � � � � � � � � � 	 � � � �

� � 	 � � � 	 � � �
 	

(T-ASSIGN)

CIS 500, 22 October 13

Final example

� � � � � � � 	 �
 � � � � � � � � � � �

� � � � � � 	 �

� � � � � � � � � � � � � 	

� � � �
 � � � � � � � � � � � � 	 � � � � � � � � � � � � �

� � � � � � � � 	 � � � � � � � �

 � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � � � � �
 � � � � � � � � � � � 	 � � � � � � �

� � � � � � � � 	 � � � � � � � � � � � � �

CIS 500, 22 October 14

