CIS 500

Software Foundations

Fall 2003

22 October

N

CIS 500, 22 October

References

_

CIS 500, 22 October

4 Mutability N

¢ In most programming languages, variables are mutable — i.e., a
variable provides both

¢ a name that refers to a previously calculated value, and
¢ the possibility of overwriting this value with another (which will be
referred to by the same name)
¢ In some languages (e.g., OCaml), these two features are Kkept separate

¢ variables are only for naming — the binding between a variable
and its value is immutable

¢ introduce a new class of mutable values (called reference cells or
references)

¢+ at any given moment, a reference holds a value (and can be
dereferenced to obtain this value)

\ ¢ a new value may be assigned to a reference /

CIS 500, 22 October 3

ﬁVe choose OCaml’s style, which is easier to work with formally.

to a Ref T (actually, a Ref (Option T)) here.

N

\

So a variable of type T in most languages (except OCaml) will correspond

CIS 500, 22 October

/ Basic Examples

r :=7
(r:=succ(lr); !r)

(r:=succ(!r); r:=succ('r); r:=succ(!r); r:=succ('r); !r)

_

CIS 500, 22 October

/ Basic Examples

r :=7
(r:=succ(lr); !r)

(r:=succ(!r); r:=succ('r); r:=succ(!r); r:=succ('r); !r)

i.e.,

((((r:=succ(!'r); r:=succ(!r)); r:=succ(!r)); r:=succ(!r));

_

'r)

CIS 500, 22 October

-

pointed to is not copied.

(s:=6; !'r)

N

Aliasing

A value of type Ref T is a pointer to a cell holding a value of type T.

r =

If this value is “copied” by assigning it to another variable, the cell

So we can change r by assigning to s:

~

CIS 500, 22 October

/ Aliasing all around us

Reference cells are not the only language feature that introduces the
possibility of aliasing.

¢ arrays
¢ communication channels

¢ I/O devices (disks, etc.)

N

~

CIS 500, 22 October

4 The difficulties of aliasing N

The possibility of aliasing invalidates all sorts of useful forms of reasoning
about programs, both by programmers...
The function
Ar:Ref Nat. As:Ref Nat. (r:=2; s:=3; Ir)

always returns 2 unless r and s are aliases for the same cell.
...and by compilers:

Code motion out of loops, common subexpression elimination,
allocation of variables to registers, and detection of uninitialized
variables all depend upon the compiler knowing which objects a
load or a store operation could reference.

High-performance compilers spend significant energy on alias analysis to
try to establish when different variables cannot possibly refer to the

@me storage. /

CIS 500, 22 October 8

/ The benefits of aliasing \

The problems of aliasing have led some language designers simply to
disallow it (e.g., Haskell).

But there are good reasons why most languages do provide constructs
involving aliasing:

¢ efficiency (e.g., arrays)
¢ “action at a distance” (e.g., symbol tables)
¢ shared resources (e.g., locks) in concurrent systems

¢ etc.

N /

CIS 500, 22 October 9

/ Example

c =ref O

incc = Ax:Unit. (c succ (!c); !'c)

decc = Ax:Unit. (c pred (lc); !c)
incc unit

decc unit

o = {i = incc, d = decc}

_

CIS 500, 22 October

ﬁet newcounter

_

A_:Unit.
let ¢ =
let incc
let decc
let o =

0)

ref 0 in

{i

Ax:Unit. (c := succ ('c);
Ax:Unit. (c := pred (!c);

incc, d = decc} in

lc) in

lc) in

CIS 500, 22 October

1l

/ Syntax

t U= terms
unit unit constant
X variable
Ax:T.t abstraction
t t application
ref t reference creation
It dereference
t:= assignment

\ plus other familiar types, in examples.

CIS 500, 22 October

_

Typing Rules

N t7 : Tq

"' ref t1 : Ref Tj

I'F t1 : Ref T4

N 't7 : T4

'ty : Ref T4 Nk t2 :

' t7:=t2> : Unit

(T-REF)

(T-DEREF)

(T-ASSIGN)

/

CIS 500, 22 October

13

/ Final example

NatArray = Ref (Nat—Nat);
newarray = A_:Unit. ref (An:Nat.0);
: Unit — NatArray

lookup = Aa:NatArray. An:Nat. (!a) n;
: NatArray — Nat — Nat

update = Aa:NatArray. Am:Nat. Av:Nat.
let oldf = !a in
a := (An:Nat. if equal m n then v else oldf n);
: NatArray — Nat — Nat — Unit

N

CIS 500, 22 October

14

