’/ (\ \ // Administrivia \
CIS 500
¢ Changes to recitation schedule:

SOftwar e Foundatlons ¢ The advanced recitations on Wednesday 6:00 - 7:30 and Thursday
6:30 - 8:00 are cancelled. The Wednesday 3:30 - 5:00 advanced
Fa’" 2003 recitation continues as before.
+ Two new review recitations are now available at [...]
* You are welcome to attend any recitation(s) you find convenient. (If
27 OCtOber J we have capacity problems, we will figure something out later.)

The complete list of recitation times and meeting places is available
on the course web page.

.

CIS 500, 27 October 1 CIS 500, 27 October 2

// \ // Evaluation \

What is the value of the expression ref 07?

[References (continued)]

CIS 500, 27 October 3 CIS 500, 27 October 4

/ Evaluation \ / Evaluation \

What is the value of the expression ref 07? What is the value of the expression ref 07?
Crucial observation: evaluating ref 0 must do something. Crucial observation: evaluating ref 0 must do something.
Otherwise, Otherwise,
r =ref O r =ref O
=ref O =ref O
and and
=ref O r =ref O
=r S =T
would behave the same. would behave the same.
Specifically, evaluating ref 0 should allocate some storage and yield a
reference (or pointer) to that storage.

_ 2N /

CIS 500, 27 October 4-a CIS 500, 27 October 4-b

/ Evaluation \ / The Store \

What is the value of the expression ref 0? A reference names a location in the store (also Known as the heap or
just the memory).

What is the store?

Crucial observation: evaluating ref 0 must do something.

Otherwise,
r =ref O
=ref O
and
r =ref O
s=r

would behave the same.

Specifically, evaluating ref 0 should allocate some storage and yield a
reference (or pointer) to that storage.

So what is a reference?

_ 2N /

CIS 500, 27 October 4-c CIS 500, 27 October)

/ The Store \

A reference names a location in the store (also Known as the heap or
just the memory).

What is the store?

¢ Concretely: An array of 8-bit bytes, indexed by 32-bit integers.

_ /

CIS 500, 27 October S-a

/ The Store \

A reference names a location in the store (also Known as the heap or
just the memory).

What is the store?
¢ Concretely: An array of 8-bit bytes, indexed by 32-bit integers.
¢ More abstractly: an array of values

¢ Even more abstractly: a partial function from locations to values.

_ /

CIS 500, 27 October S-c

/ The Store \

A reference names a location in the store (also Known as the heap or
just the memory).

What is the store?
¢ Concretely: An array of 8-bit bytes, indexed by 32-bit integers.

¢ More abstractly: an array of values

_ /

CIS 500, 27 October S5-b

/ Locations \

Syntax of values:

v o= values
unit unit constant
Ax:T.t abstraction value
1 store location

\ ... and since all values are termsy

CIS 500, 27 October 6

Syntax of Terms \
t u= terms
unit unit constant
x variable
Ax:T.t abstraction
tt application
ref t reference creation
1t dereference
t:=t assignment
1 store location

CIS 500, 27 October

/ Evaluation \

The result of evaluating a term now depends on the store in which it is
evaluated. Moreover, the result of evaluating a term is not just a value —
we must also Keep track of the changes that get made to the store.

l.e., the evaluation relation should now map a term and a store to a
reduced term and a new store.

tlp— 'y

We use the metavariable p to range over stores.

CIS 500, 27 October

e

/

e

Aside \

Does this mean we are going to allow programmers to write explicit
locations in their programs??

No: This is just a modeling trick. We are enriching the “source language”
to include some run-time structures, so that we can continue to formalize
evaluation as a relation between source terms.

Aside: If we formalize evaluation in the big-step style, then we can add
locations to the set of values (results of evaluation) without adding them
to the set of terms. J

CIS 500, 27 October 8

Evaluation \

An assignment tq:=t, first evaluates t; and t, until they become values...

t1lp— ty | u

(E-AsSIGN1)
t1i=t2 | u— t]:=t2 | u’
t2lp—t3 | u
2 (E-AsSIGN2)
vii=ta |u— vi:i=th | u’
.. and then returns unit and updates the store:
l:=v2 | 0 — unit | [l = v2lu (E-AsSIGN)

/

CIS 500, 27 October 10

A term of the form ref t; first evaluates inside t; until it becomes a \
value...

t1lp—ty |y (E-REF)

ref t1 |y — ref ty | u’

.. and then chooses (allocates) a fresh location 1, augments the store
with a binding from 1 to vi, and returns L

1 ¢ domi{n) (E-REerV)

ref vi |lu— 1| (u, 1 vy)

/

CIS 500, 27 October n

Evaluation rules for function abstraction and application are augmented \
with stores, but don’t do anything with them directly.

tiluw— tylu’

(E-APP1)
t1 t2l u— t] t2| u’
t2| u— t3|
(E-APP2)
V1 t2| u—wv té\ p.l
Ax:T11.t12) v2lp — [x > valtizl p (E-APPABS)

CIS 500, 27 October 13

A term !t first evaluates in t; until it becomes a value... \

t1lp—ty |y
! (E-DEREF)

1 | — g [

.. and then looks up this value (which must be a location, if the original
term was well typed) and returns its contents in the current store:

nl) =v
R — (E-DEREFLOC)
njp—v|u
CIS 500, 27 October 12
Aside: garbage collection \

Note that we are not modeling garbage collection — the store just grows
without bound.

CIS 500, 27 October 14

/ Aside: pointer arithmetic

We can’t do any!

_

CIS 500, 27 October

15

/ Typing Locations

Q: What is the type of a location?

_

CIS 500, 27 October

Store Typings]

\ /

CIS 500, 27 October 16

/ Typing Locations \

Q: What is the type of a location?
A: It depends on the storel
E.g., in the store (1; + unit, 1, + unit), the term !1, has type Unit.

But in the store (17 — unit, 1> — Ax:Unit.x), the term !'1, has type
Unit—Unit.

\ /

CIS 500, 27 October 17-a

/ Typing Locations — first try \ / Typing Locations — first try \
Roughly: Roughly:

rEpl): T r-pl): T

I'E1l: Ref Ty I'E1l: Ref T,

More precisely:

FlpukEpd):T

'l uk1l:Ref Ty

l.e., typing is now a four-place relation (between contexts, stores, terms,

and types).
CIS 500, 27 October 18 CIS 500, 27 October 18-a

/ Problem \ / Problem! \

However; this rule is not completely satisfactory. For one thing, it can But wait... it gets worse. Suppose
make typing derivations very largel

. (u=1; = Ax:Nat. 'l x,
E.g., if

(u=11 > Ax:Nat. 999 1> — Ax:Nat. !'l; x),
=hL x:Nat. ,

12 — Ax:Nat. 'l ('l x), Now how big is the typing derivation for !1,?
lz — Ax:Nat. !l2 (!'l2 x),
lg — Ax:Nat. !lz (!'l3 x),
s — Ax:Nat. !ls (!'lg x)),

then how big is the typing derivation for !157?

\ AN /

CIS 500, 27 October 19 CIS 500, 27 October 20

/ Store Typings \

Observation: The typing rules we have chosen for references guarantee
that a given location in the store is always used to hold values of the
same type.

These intended types can be collected into a store typing — a partial
function from locations to types.

_ /

CIS 500, 27 October 21

/Now, suppose we are given a store typing X describing the store u in \
which we intend to evaluate some term t. Then we can use X to look
up the types of locations in t instead of calculating them from the values
in u.

= =T (T-Loc)

I ZF1:Ref Ty

l.e., typing is now a four-place relation between between contexts, store
typings, terms, and types.

_ /

CIS 500, 27 October 23

ég., for

A reasonable store typing would be

_

u=(l; — Ax:Nat.
12 — Ax:Nat.
13 +— Ax:Nat.
14 — Ax:Nat.

ls — Ax:Nat.

999,

1y (L x),
L Ol %),
s (s %),
g ('l x)),

Y = (11 + Nat—Nat,
12 +— Nat—Nat,
13 +— Nat—Nat,
1y +— Nat—Nat,

ls — Nat—Nat)

CIS 500, 27 October

22

/ Final typing rules \
() =1
(T-Loc)
I XZkF1:Ref Ty
Nkt : Ty
(T-REeF)
' Xk ref t1 : Ref Ty
' XFty : Ref T1g
(T-DEREF)
FNXkE 1ty : Ty
'l Xkt : Ref Ty N XZkFt2: T
(T-ASSIGN)

_

I ZFty:=tz : Unit

/

CIS 500, 27 October

24

/Q: Where do these store typings come from?

_

CIS 500, 27 October

25

-

[on board]

_

Safety

CIS 500, 27 October

26

/Q: Where do these store typings come from? \

A: When we first typecheck a program, there will be no explicit locations,
so we can use an empty store typing.

So, when a new location is created during evaluation,

L& dom(n) (E-RerV)

ref vi |lu— 1| (u, 1 vy)

we can observe the type of vi and extend the “current store typing”
appropriately.

_ _/

CIS 500, 27 October 25-a

