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Administrivia

� Changes to recitation schedule:

� The advanced recitations on Wednesday 6:00 – 7:30 and Thursday

6:30 – 8:00 are cancelled. The Wednesday 3:30 – 5:00 advanced

recitation continues as before.

� Two new review recitations are now available at [...]

� You are welcome to attend any recitation(s) you find convenient. (If

we have capacity problems, we will figure something out later.)

The complete list of recitation times and meeting places is available

on the course web page.

CIS 500, 27 October 2

References (continued)
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Evaluation

What is the value of the expression � � � � ?
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Evaluation

What is the value of the expression � � � � ?

Crucial observation: evaluating � � � � must do something.

Otherwise,

� � � � � �

� � � � � �

and

� � � � � �

� � �

would behave the same.
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Evaluation

What is the value of the expression � � � � ?

Crucial observation: evaluating � � � � must do something.

Otherwise,

� � � � � �

� � � � � �

and

� � � � � �

� � �

would behave the same.

Specifically, evaluating � � � � should allocate some storage and yield a

reference (or pointer) to that storage.
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Evaluation

What is the value of the expression � � � � ?

Crucial observation: evaluating � � � � must do something.

Otherwise,

� � � � � �

� � � � � �

and

� � � � � �

� � �

would behave the same.

Specifically, evaluating � � � � should allocate some storage and yield a

reference (or pointer) to that storage.

So what is a reference?
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The Store

A reference names a location in the store (also known as the heap or

just the memory).

What is the store?
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The Store

A reference names a location in the store (also known as the heap or

just the memory).

What is the store?

� Concretely: An array of 8-bit bytes, indexed by 32-bit integers.
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The Store

A reference names a location in the store (also known as the heap or

just the memory).

What is the store?

� Concretely: An array of 8-bit bytes, indexed by 32-bit integers.

� More abstractly: an array of values
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The Store

A reference names a location in the store (also known as the heap or

just the memory).

What is the store?

� Concretely: An array of 8-bit bytes, indexed by 32-bit integers.

� More abstractly: an array of values

� Even more abstractly: a partial function from locations to values.
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Locations

Syntax of values:

� ::= values

� � � � unit constant

� � � � 	 � abstraction value


 store location

... and since all values are terms...
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Syntax of Terms
� ::= terms

� � � � unit constant
� variable

� � � � 	 � abstraction

� � application

� � � � reference creation

� � dereference

� � � � assignment


 store location
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Aside

Does this mean we are going to allow programmers to write explicit

locations in their programs??

No: This is just a modeling trick. We are enriching the “source language”

to include some run-time structures, so that we can continue to formalize

evaluation as a relation between source terms.

Aside: If we formalize evaluation in the big-step style, then we can add

locations to the set of values (results of evaluation) without adding them

to the set of terms.
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Evaluation

The result of evaluating a term now depends on the store in which it is

evaluated. Moreover, the result of evaluating a term is not just a value —

we must also keep track of the changes that get made to the store.

I.e., the evaluation relation should now map a term and a store to a

reduced term and a new store.

� � � � � �
�
� �
�

We use the metavariable � to range over stores.
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Evaluation

An assignment � � � � � � first evaluates � � and � � until they become values...

� � � � � � �
�
� � �
�

� � � � � � � � � � �
�
� � � � � � �
�

(E-ASSIGN1)

� � � � � � �
�
� � �
�

� � � � � � � � � � � � � � �
�
� � �
�

(E-ASSIGN2)

... and then returns � � � � and updates the store:


 � � � � � � � � � � � � � 	 
 
� � � � � (E-ASSIGN)
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A term of the form � � � � � first evaluates inside � � until it becomes a

value...

� � � � � � �
�
� � �
�

� � � � � � � � � � � � �
�
� � �
�

(E-REF)

... and then chooses (allocates) a fresh location 
 , augments the store

with a binding from 
 to � � , and returns 
 :


 �� dom � � �

� � � � � � � � � 
 � � � � 
 
� � � �

(E-REFV)
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A term � � � first evaluates in � � until it becomes a value...

� � � � � � �
�
� � �
�

� � � � � � � � � �� � �
�

(E-DEREF)

... and then looks up this value (which must be a location, if the original

term was well typed) and returns its contents in the current store:

� � 
 � � �

� 
 � � � � � � �

(E-DEREFLOC)
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Evaluation rules for function abstraction and application are augmented

with stores, but don’t do anything with them directly.

� � � � � � �
�
� � �
�

� � � � � � � � �
�
� � � � �
�

(E-APP1)

� � � � � � �
�
� � �
�

� � � � � � � � � � �
�
� � �
�

(E-APP2)

� � � � � � � 	 � � � � � � � � � � 	 � 
� � � � � � � � � (E-APPABS)
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Aside: garbage collection

Note that we are not modeling garbage collection — the store just grows

without bound.
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Aside: pointer arithmetic

We can’t do any!
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Store Typings
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Typing Locations

Q: What is the type of a location?
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Typing Locations

Q: What is the type of a location?

A: It depends on the store!

E.g., in the store � 
 � 
� � � � � � 
 � 
� � � � � � , the term � 
 � has type � � � � .

But in the store � 
 � 
� � � � � � 
 � 
� � � � � � � � 	 � � , the term � 
 � has type
� � � � � � � � � .
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Typing Locations — first try

Roughly:

� � � � 
 � � � �

� � 
 � � � � � �
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Typing Locations — first try

Roughly:

� � � � 
 � � � �

� � 
 � � � � � �

More precisely:

� � � � � � 
 � � � �

� � � � 
 � � � � � �

I.e., typing is now a four-place relation (between contexts, stores, terms,

and types).
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Problem

However, this rule is not completely satisfactory. For one thing, it can

make typing derivations very large!

E.g., if

� � � 
 � 
� � � � � � � 	 � � � �


 � 
� � � � � � � 	 � 
 � � � 
 � � � �


 � 
� � � � � � � 	 � 
 � � � 
 � � � �


 � 
� � � � � � � 	 � 
 � � � 
 � � � �


 	 
� � � � � � � 	 � 
 � � � 
 � � � � �

then how big is the typing derivation for � 
 	 ?
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Problem!

But wait... it gets worse. Suppose

� � � 
 � 
� � � � � � � 	 � 
 � � �


 � 
� � � � � � � 	 � 
 � � � �

Now how big is the typing derivation for � 
 � ?
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Store Typings

Observation: The typing rules we have chosen for references guarantee

that a given location in the store is always used to hold values of the

same type.

These intended types can be collected into a store typing — a partial

function from locations to types.
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E.g., for

� � � 
 � 
� � � � � � � 	 � � � �


 � 
� � � � � � � 	 � 
 � � � 
 � � � �


 � 
� � � � � � � 	 � 
 � � � 
 � � � �


 � 
� � � � � � � 	 � 
 � � � 
 � � � �


 	 
� � � � � � � 	 � 
 � � � 
 � � � � �

A reasonable store typing would be

� � � 
 � 
� � � � � � � � �


 � 
� � � � � � � � �


 � 
� � � � � � � � �


 � 
� � � � � � � � �


 	 
� � � � � � � � �

CIS 500, 27 October 22

Now, suppose we are given a store typing � describing the store � in

which we intend to evaluate some term � . Then we can use � to look

up the types of locations in � instead of calculating them from the values

in � .

� � 
 �
� � �

� � � � 
 � � � � � �

(T-LOC)

I.e., typing is now a four-place relation between between contexts, store

typings, terms, and types.
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Final typing rules

� � 
 �
� � �

� � � � 
 � � � � � �

(T-LOC)

� � � � � � � � �

� � � � � � � � � � � � � � �

(T-REF)

� � � � � � � � � � � � �

� � � � � � � � � � �

(T-DEREF)

� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

(T-ASSIGN)
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Q: Where do these store typings come from?
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Q: Where do these store typings come from?

A: When we first typecheck a program, there will be no explicit locations,

so we can use an empty store typing.

So, when a new location is created during evaluation,


 �� dom � � �

� � � � � � � � � 
 � � � � 
 
� � � �

(E-REFV)

we can observe the type of � � and extend the “current store typing”

appropriately.
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Safety

[on board]
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