
CIS 500

Software Foundations

Fall 2003

27 October

CIS 500, 27 October 1

Administrivia

� Changes to recitation schedule:

� The advanced recitations on Wednesday 6:00 – 7:30 and Thursday

6:30 – 8:00 are cancelled. The Wednesday 3:30 – 5:00 advanced

recitation continues as before.

� Two new review recitations are now available at [...]

� You are welcome to attend any recitation(s) you find convenient. (If

we have capacity problems, we will figure something out later.)

The complete list of recitation times and meeting places is available

on the course web page.

CIS 500, 27 October 2

References (continued)

CIS 500, 27 October 3

Evaluation

What is the value of the expression � � � � ?

CIS 500, 27 October 4



Evaluation

What is the value of the expression � � � � ?

Crucial observation: evaluating � � � � must do something.

Otherwise,

� � � � � �

� � � � � �

and

� � � � � �

� � �

would behave the same.

CIS 500, 27 October 4-a

Evaluation

What is the value of the expression � � � � ?

Crucial observation: evaluating � � � � must do something.

Otherwise,

� � � � � �

� � � � � �

and

� � � � � �

� � �

would behave the same.

Specifically, evaluating � � � � should allocate some storage and yield a

reference (or pointer) to that storage.

CIS 500, 27 October 4-b

Evaluation

What is the value of the expression � � � � ?

Crucial observation: evaluating � � � � must do something.

Otherwise,

� � � � � �

� � � � � �

and

� � � � � �

� � �

would behave the same.

Specifically, evaluating � � � � should allocate some storage and yield a

reference (or pointer) to that storage.

So what is a reference?

CIS 500, 27 October 4-c

The Store

A reference names a location in the store (also known as the heap or

just the memory).

What is the store?

CIS 500, 27 October 5



The Store

A reference names a location in the store (also known as the heap or

just the memory).

What is the store?

� Concretely: An array of 8-bit bytes, indexed by 32-bit integers.

CIS 500, 27 October 5-a

The Store

A reference names a location in the store (also known as the heap or

just the memory).

What is the store?

� Concretely: An array of 8-bit bytes, indexed by 32-bit integers.

� More abstractly: an array of values

CIS 500, 27 October 5-b

The Store

A reference names a location in the store (also known as the heap or

just the memory).

What is the store?

� Concretely: An array of 8-bit bytes, indexed by 32-bit integers.

� More abstractly: an array of values

� Even more abstractly: a partial function from locations to values.

CIS 500, 27 October 5-c

Locations

Syntax of values:

� ::= values

� � � � unit constant

� � � � 	 � abstraction value


 store location

... and since all values are terms...

CIS 500, 27 October 6



Syntax of Terms
� ::= terms

� � � � unit constant
� variable

� � � � 	 � abstraction

� � application

� � � � reference creation

� � dereference

� � � � assignment


 store location

CIS 500, 27 October 7

Aside

Does this mean we are going to allow programmers to write explicit

locations in their programs??

No: This is just a modeling trick. We are enriching the “source language”

to include some run-time structures, so that we can continue to formalize

evaluation as a relation between source terms.

Aside: If we formalize evaluation in the big-step style, then we can add

locations to the set of values (results of evaluation) without adding them

to the set of terms.

CIS 500, 27 October 8

Evaluation

The result of evaluating a term now depends on the store in which it is

evaluated. Moreover, the result of evaluating a term is not just a value —

we must also keep track of the changes that get made to the store.

I.e., the evaluation relation should now map a term and a store to a

reduced term and a new store.

� � � � � �
�
� �
�

We use the metavariable � to range over stores.

CIS 500, 27 October 9

Evaluation

An assignment � � � � � � first evaluates � � and � � until they become values...

� � � � � � �
�
� � �
�

� � � � � � � � � � �
�
� � � � � � �
�

(E-ASSIGN1)

� � � � � � �
�
� � �
�

� � � � � � � � � � � � � � �
�
� � �
�

(E-ASSIGN2)

... and then returns � � � � and updates the store:


 � � � � � � � � � � � � � 	 
 
� � � � � (E-ASSIGN)

CIS 500, 27 October 10



A term of the form � � � � � first evaluates inside � � until it becomes a

value...

� � � � � � �
�
� � �
�

� � � � � � � � � � � � �
�
� � �
�

(E-REF)

... and then chooses (allocates) a fresh location 
 , augments the store

with a binding from 
 to � � , and returns 
 :


 �� dom � � �

� � � � � � � � � 
 � � � � 
 
� � � �

(E-REFV)

CIS 500, 27 October 11

A term � � � first evaluates in � � until it becomes a value...

� � � � � � �
�
� � �
�

� � � � � � � � � �� � �
�

(E-DEREF)

... and then looks up this value (which must be a location, if the original

term was well typed) and returns its contents in the current store:

� � 
 � � �

� 
 � � � � � � �

(E-DEREFLOC)

CIS 500, 27 October 12

Evaluation rules for function abstraction and application are augmented

with stores, but don’t do anything with them directly.

� � � � � � �
�
� � �
�

� � � � � � � � �
�
� � � � �
�

(E-APP1)

� � � � � � �
�
� � �
�

� � � � � � � � � � �
�
� � �
�

(E-APP2)

� � � � � � � 	 � � � � � � � � � � 	 � 
� � � � � � � � � (E-APPABS)

CIS 500, 27 October 13

Aside: garbage collection

Note that we are not modeling garbage collection — the store just grows

without bound.

CIS 500, 27 October 14



Aside: pointer arithmetic

We can’t do any!

CIS 500, 27 October 15

Store Typings

CIS 500, 27 October 16

Typing Locations

Q: What is the type of a location?

CIS 500, 27 October 17

Typing Locations

Q: What is the type of a location?

A: It depends on the store!

E.g., in the store � 
 � 
� � � � � � 
 � 
� � � � � � , the term � 
 � has type � � � � .

But in the store � 
 � 
� � � � � � 
 � 
� � � � � � � � 	 � � , the term � 
 � has type
� � � � � � � � � .

CIS 500, 27 October 17-a



Typing Locations — first try

Roughly:

� � � � 
 � � � �

� � 
 � � � � � �

CIS 500, 27 October 18

Typing Locations — first try

Roughly:

� � � � 
 � � � �

� � 
 � � � � � �

More precisely:

� � � � � � 
 � � � �

� � � � 
 � � � � � �

I.e., typing is now a four-place relation (between contexts, stores, terms,

and types).

CIS 500, 27 October 18-a

Problem

However, this rule is not completely satisfactory. For one thing, it can

make typing derivations very large!

E.g., if

� � � 
 � 
� � � � � � � 	 � � � �


 � 
� � � � � � � 	 � 
 � � � 
 � � � �


 � 
� � � � � � � 	 � 
 � � � 
 � � � �


 � 
� � � � � � � 	 � 
 � � � 
 � � � �


 	 
� � � � � � � 	 � 
 � � � 
 � � � � �

then how big is the typing derivation for � 
 	 ?

CIS 500, 27 October 19

Problem!

But wait... it gets worse. Suppose

� � � 
 � 
� � � � � � � 	 � 
 � � �


 � 
� � � � � � � 	 � 
 � � � �

Now how big is the typing derivation for � 
 � ?

CIS 500, 27 October 20



Store Typings

Observation: The typing rules we have chosen for references guarantee

that a given location in the store is always used to hold values of the

same type.

These intended types can be collected into a store typing — a partial

function from locations to types.

CIS 500, 27 October 21

E.g., for

� � � 
 � 
� � � � � � � 	 � � � �


 � 
� � � � � � � 	 � 
 � � � 
 � � � �


 � 
� � � � � � � 	 � 
 � � � 
 � � � �


 � 
� � � � � � � 	 � 
 � � � 
 � � � �


 	 
� � � � � � � 	 � 
 � � � 
 � � � � �

A reasonable store typing would be

� � � 
 � 
� � � � � � � � �


 � 
� � � � � � � � �


 � 
� � � � � � � � �


 � 
� � � � � � � � �


 	 
� � � � � � � � �

CIS 500, 27 October 22

Now, suppose we are given a store typing � describing the store � in

which we intend to evaluate some term � . Then we can use � to look

up the types of locations in � instead of calculating them from the values

in � .

� � 
 �
� � �

� � � � 
 � � � � � �

(T-LOC)

I.e., typing is now a four-place relation between between contexts, store

typings, terms, and types.

CIS 500, 27 October 23

Final typing rules

� � 
 �
� � �

� � � � 
 � � � � � �

(T-LOC)

� � � � � � � � �

� � � � � � � � � � � � � � �

(T-REF)

� � � � � � � � � � � � �

� � � � � � � � � � �

(T-DEREF)

� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

(T-ASSIGN)

CIS 500, 27 October 24



Q: Where do these store typings come from?

CIS 500, 27 October 25

Q: Where do these store typings come from?

A: When we first typecheck a program, there will be no explicit locations,

so we can use an empty store typing.

So, when a new location is created during evaluation,


 �� dom � � �

� � � � � � � � � 
 � � � � 
 
� � � �

(E-REFV)

we can observe the type of � � and extend the “current store typing”

appropriately.

CIS 500, 27 October 25-a

Safety

[on board]

CIS 500, 27 October 26


