
CIS 500

Software Foundations

Fall 2003

29 October

CIS 500, 29 October 1

Exceptions (Chapter 14)

CIS 500, 29 October 2

Motivation

Most programming languages provide some mechanism for interrupting

the normal flow of control in a program to signal some exceptional

condition.

Note that it is always possible to program without exceptions —

instead of raising an exception, we return � � � � ; instead of

returning result � normally, we return � � � � . But now we need to

wrap every function application in a � 	
 � to find out whether it

returned a result or an exception.

� � much more convenient to build this mechanism into the

language.

CIS 500, 29 October 3

Varieties of non-local control

There are many ways of adding “non-local control flow”

� � � � � � � �

� � � � �

�
 � � � � � � 	 � � � � � �

�
 	 �
 � � �
 � (or � 	 � � � � � �
 �) in many variations

� � 	 	 	 � � / continuations

� more esoteric variants (cf. many Scheme papers)

CIS 500, 29 October 4

Varieties of non-local control

There are many ways of adding “non-local control flow”

� � � � � � � �

� � � � �

�
 � � � � � � 	 � � � � � �

�
 	 �
 � � �
 � (or � 	 � � � � � �
 �) in many variations

� � 	 	 	 � � / continuations

� more esoteric variants (cf. many Scheme papers)

Let’s begin with the simplest of these.

CIS 500, 29 October 4-a

An “abort” primitive

First step: raising exceptions (but not catching them).

� ::= ... terms
�

 �
 run-time error

Evaluation

�

 �
 � �

� � �

 �
 (E-APPERR1)
� � �

 �
 � � �

 �
 (E-APPERR2)

Typing

� � �

 �
 � � (T-ERROR)

CIS 500, 29 October 5

Typing errors

Note that the typing rule for �

 �
 allows us to give it any type � .

� � �

 �
 � � (T-ERROR)

This means that both

� � � � � � � � � 	 �
 � � � � � �
and

� � � � � � � � � � � � � �
 � � � � � �

will typecheck.

CIS 500, 29 October 6

Aside: Syntax-directedness

Note that this rule

� � �

 �
 � � (T-ERROR)

has a problem from the point of view of implementation: it is not

syntax-directed!

This will cause the Uniqueness of Types theorem to fail.

For purposes of defining the language and proving its type safety, this is

not a problem — Uniqueness of Types is not critical.

Let’s think a little, though, about how the rule might be fixed...

CIS 500, 29 October 7

An alternative

Can’t we just decorate the �

 �
 keyword with its intended type, as we

have done to fix related problems with other constructs?

� �

�

�

 �
 	
 �
�

� � (T-ERROR)

CIS 500, 29 October 8

An alternative

Can’t we just decorate the �

 �
 keyword with its intended type, as we

have done to fix related problems with other constructs?

� �

�

�

 �
 	
 �
�

� � (T-ERROR)

No, this doesn’t work!

E.g. (assuming our language also has numbers and booleans):

 � � � � � � � �

 �
 	
 � � � 	 � � � � � � � 	
 � � �

� �
 � � � � �

 �
 	
 � � � 	 �

Exercise: Come up with a similar example using just functions and �

 �
 .

CIS 500, 29 October 8-a

Another alternative

In a system with universal polymorphism (like OCaml), the variability of

typing for �

 �
 can be dealt with by assigning it a variable type!

� � �

 �
 �

� 	 (T-ERROR)

In effect, we are replacing the uniqueness of typing property by a

weaker (but still useful) property called most general typing.

I.e., although a term may have many types, we always have a compact

way of representing the set of all of its possible types.

CIS 500, 29 October 9

Yet another alternative

Alternatively, in a system with subtyping (which we’ll discuss in the next

lecture) and a minimal � � � type, we can give �

 �
 a unique type:

� � �

 �
 � � � � (T-ERROR)

(Of course, what we’ve really done is just pushed the complexity of the

old �

 �
 rule onto the � � � type! We’ll return to this point later.)

CIS 500, 29 October 10

For now...

Let’s stick with the original rule

� � �

 �
 � � (T-ERROR)

and live with the resulting nondeterminism of the typing relation.

CIS 500, 29 October 11

Type safety

The preservation theorem requires no changes when we add �

 �
 : if a

term of type � reduces to �

 �
 , that’s fine, since �

 �
 has every type � .

CIS 500, 29 October 12

Type safety

The preservation theorem requires no changes when we add �

 �
 : if a

term of type � reduces to �

 �
 , that’s fine, since �

 �
 has every type � .

Progress, though, requires a litte more care.

CIS 500, 29 October 12-a

Progress

First, note that we do not want to extend the set of values to include

�

 �
 , since this would make our new rule for propagating errors

through applications.

� � �

 �
 � � �

 �
 (E-APPERR2)

overlap with our existing computation rule for applications:

� � � � � � � � � � � � � �

� � � � �� � � � � � � (E-APPABS)

e.g., the term

� � � � 	
 � � � � � � � �

could evaluate to either (which would be wrong) or �

 �
 (which is

what we intend).

CIS 500, 29 October 13

Progress

Instead, we keep �

 �
 as a non-value normal form, and refine the

statement of progress to explicitly mention the possibility that terms may

evaluate to �

 �
 instead of to a value.

THEOREM [PROGRESS]: Suppose � is a closed, well-typed normal

form. Then either � is a value or � � �

 �
 .

CIS 500, 29 October 14

Catching exceptions
� ::= ... terms

�
 � � � � � � trap errors
Evaluation

�
 � � � � � � � �

� � � � (E-TRYV)

�
 � �

 �
 � � � � �

� � � � (E-TRYERROR)

� �

� � �
�

�

�
 � � � � � � � �

� � �
 � �
�

� � � � � �

(E-TRY)

Typing

� � � � � � � � � � � �

� � �
 � � � � � � � � � �
(T-TRY)

CIS 500, 29 October 15

Exceptions carrying values
� ::= ... terms

 	 �
 � � raise exception

Evaluation

�
 	 �
 � � � � � � �

� �
 	 �
 � � � � (E-APPRAISE1)
� � �
 	 �
 � � � � � � �
 	 �
 � � � � (E-APPRAISE2)

� �

� � �
�

�

 	 �
 � � �

� �
 	 �
 � �
�

�

(E-RAISE)

 	 �
 � �
 	 �
 � � � � � � �
 	 �
 � � � � (E-RAISERAISE)

CIS 500, 29 October 16

�
 � � � � � � � �

� � � � (E-TRYV)

�
 �
 	 �
 � � � � � � � � �

� � � � � � � (E-TRYRAISE)

� �

� � �
�

�

�
 � � � � � � � �

� � �
 � �
�

� � � � � �

(E-TRY)

CIS 500, 29 October 17

Typing

� � � � � � � � �

� �
 	 �
 � � � � �

(T-EXN)

� � � � � � � � � � � � � � � � �

� � �
 � � � � � � � � � �

(T-TRY)

CIS 500, 29 October 18

