
CIS 500

Software Foundations

Fall 2003

3 November

CIS 500, 3 November 1

Administrivia

� Reminder: Midterm II is next Wednesday, November 12th.

Covering all material we’ve seen so far, up through Chapter 16 of

TAPL (but omitting Chapter 12 and Section 15.6).

� Schedule:

� Last week: Chapter 14 (references) and Chapters 13 (exceptions)

� This week: Chapter 15 (subtyping) and 16 (metatheory of

subtyping)

� Next week: review session, Midterm II

� Change of BCP’s office hours, next two weeks:

� This wednesday 5-6, as usual

� No office hour this Thursday, Nov. 6

� Next week: Monday, Nov. 10, 3-5 (only)

CIS 500, 3 November 2

Subtyping

CIS 500, 3 November 3

Varieties of Polymorphism

� Parametric polymorphism (ML-style)

� Subtype polymorphism (OO-style)

� Ad-hoc polymorphism (overloading)

CIS 500, 3 November 4

Motivation

With our usual typing rule for applications

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � �

(T-APP)

the term
� 	
 � �
 � � � � � �
 �
 � �
 � � � � � � �

is not well typed.

CIS 500, 3 November 5

Motivation

With our usual typing rule for applications

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � �

(T-APP)

the term

� 	
 � �
 � � � � � �
 �
 � �
 � � � � � � �

is not well typed.

This is silly: all we’re doing is passing the function a better argument

than it needs.

CIS 500, 3 November 5-a

Subsumption

More generally: some types are better than others, in the sense that a

value of one can always safely be used where a value of the other is

expected.

We can formalize this intuition by introducing

1. a subtyping relation between types, written � � � �

2. a rule of subsumption stating that, if � � � � , then any value of type �

can also be regarded as having type �

� � � � � � � � �

� � � � �

(T-SUB)

CIS 500, 3 November 6

Example

We will define subtyping between record types so that, for example,

�
 � � � � � � � � � � � � � �
 � � � � �

So, by subsumption,

� �
 � � � � � � � � �
 � � � � �

and hence

� 	
 � �
 � � � � � �
 �
 � �
 � � � � � � �

is well typed.

CIS 500, 3 November 7

The Subtype Relation: General rules

� � � � (S-REFL)

� � � � � � � �

� � � �

(S-TRANS)

CIS 500, 3 November 8

The Subtype Relation: Records

“Width subtyping” (forgetting fields on the right):

� � � � � �
� � 1 � � � � � � � � � � � � � �
� � 1 � � � � (S-RCDW IDTH)

Intuition: �
 � � � � � is the type of all records with at least a numeric
 field.

Note that the record type with more fields is a subtype of the record

type with fewer fields.

Reason: the type with more fields places a stronger constraint on values,

so it describes fewer values.

CIS 500, 3 November 9

“Depth subtyping” within fields:

for each 	 � � � � � �

� � � � � �
� � 1 � � � � � � � � � � � �
� � 1 � � � �

(S-RCDDEPTH)

CIS 500, 3 November 10

Example

S-RCDWIDTH

 � �
 � � � � �
 � � � � �
 � �
 � � �

S-RCDWIDTH

 � �
 � � � � �
 �

S-RCDDEPTH

 � �
 � �
 � � � � �
 � � � � � �
 � �
 � � � �

� �
 � �
 � �
 � � � � � �
 � �

CIS 500, 3 November 11

The Subtype Relation: Records

Permutation of fields:

� � � � � �
� � 1 � � � � is a permutation of � � � � � � � � 1 � � � �

� � � � � �
� � 1 � � � � � � � � � � � �
� � 1 � � � �

(S-RCDPERM)

By using S-RCDPERM together with S-RCDW IDTH and S-TRANS, we can

drop arbitrary fields within records.

CIS 500, 3 November 12

Variations

Real languages often choose not to adopt all of these record subtyping

rules. For example, in Java,

� A subclass may not change the argument or result types of a

method of its superclass (i.e., no depth subtyping)

� Each class has just one superclass (“single inheritance” of classes)

� � each class member (field or method) can be assigned a

single index, adding new indices “on the right” as more

members are added in subclasses

(i.e., no permutation for classes)

� A class may implement multiple interfaces (“multiple inheritance” of

interfaces)

I.e., permutation is allowed for interfaces.

CIS 500, 3 November 13

The Subtype Relation: Arrow types

� � � � � � � � � � � �

� � � � � � � � � � � �

(S-ARROW)

Note the order of � � and � � in the first premise. The subtype relation is

contravariant in the left-hand sides of arrows and covariant in the

right-hand sides.

Intuition: if we have a function � of type � � � � � , then we know that �

accepts elements of type � � ; clearly, � will also accept elements of any

subtype � � of � � . The type of � also tells us that it returns elements of

type � � ; we can also view these results belonging to any supertype � � of

� � . That is, any function � of type � � � � � can also be viewed as having

type � � � � � .

CIS 500, 3 November 14

The Subtype Relation: Top

It is convenient to have a type that is a supertype of every type. We

introduce a new type constant � � � , plus a rule that makes � � � a

maximum element of the subtype relation.

� � � � � � (S-TOP)

Cf. � � 	
 � � in Java.

CIS 500, 3 November 15

Review

CIS 500, 3 November 16

Subtyping

Intuitions: � � � � means...

� “An element of � may safely be used wherever an element of � is

expected.” (Official.)

� � is “better than” � .

� the set of elements of � is a subset of the set of elements of � .

� � is more informative / richer than � .

CIS 500, 3 November 17

Subtype relation

� � � � (S-REFL)

� � � � � � � �

� � � �

(S-TRANS)

� � � � � �
� � 1 � � � � � � � � � � � � � �
� � 1 � � � � (S-RCDW IDTH)

for each 	 � � � � � �

� � � � � �
� � 1 � � � � � � � � � � � �
� � 1 � � � �

(S-RCDDEPTH)

� � � � � �
� � 1 � � � � is a permutation of � � � � � � � � 1 � � � �

� � � � � �
� � 1 � � � � � � � � � � � �
� � 1 � � � �

(S-RCDPERM)

CIS 500, 3 November 18

� � � � � � � � � � � �

� � � � � � � � � � � �

(S-ARROW)

� � � � � � (S-TOP)

CIS 500, 3 November 19

Subsumption Rule

� � � � � � � � �

� � � � �

(T-SUB)

Other typing rules as in 	 �

CIS 500, 3 November 20

Properties of Subtyping

CIS 500, 3 November 21

Safety

Statements of progress and preservation theorems are unchanged from

	 � .

Proofs become a bit more involved, because the typing relation is no

longer syntax directed.

CIS 500, 3 November 22

Preservation

Theorem: If � � � � � and � � � � � , then � � � � � � .

Proof: By induction on typing derivations.

(Which cases are hard?)

CIS 500, 3 November 23

Subsumption case

Case T-SUB: � � � � � � �

CIS 500, 3 November 24

Subsumption case

Case T-SUB: � � � � � � �

By the induction hypothesis, � � � � � � . By T-SUB, � � � � � .

CIS 500, 3 November 24-a

Subsumption case

Case T-SUB: � � � � � � �

By the induction hypothesis, � � � � � � . By T-SUB, � � � � � .

Not hard!

CIS 500, 3 November 24-b

Application case

Case T-APP:

� �

By the inversion lemma for evaluation, there are three rules by which

� � � � � can be derived: E-APP1, E-APP2, and E-APPABS. Proceed by
cases.

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � �

(T-APP)

CIS 500, 3 November 25

Application case

Case T-APP:

� �

By the inversion lemma for evaluation, there are three rules by which

� � � �
� can be derived: E-APP1, E-APP2, and E-APPABS. Proceed by

cases.

Subcase E-APP1: � � � � �
�
� �
�
� �
�
� � �

The result follows from the induction hypothesis and T-APP.

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � �

(T-APP)

� � � � �
�
�

� � � � � � �
�
� � �

(E-APP1)

CIS 500, 3 November 25-a

Case T-APP (CONTINUED):

� �

Subcase E-APP2: � � � � � � � � � �
�
� �
�
� � � �
�
�

Similar.

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � �

(T-APP)

� � � � �
�
�

� � � � � � � � �
�
�

(E-APP2)

CIS 500, 3 November 26

Case T-APP (CONTINUED):

� �

Subcase E-APPABS: � � � 	
 � � � � � � � � � � � � � � � � �
 �� � � � � � �

By the inversion lemma for the typing relation...

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � �

(T-APP)

� 	
 � � � � � � � � � � � � � �
 �� � � � � � � (E-APPABS)

CIS 500, 3 November 27

Case T-APP (CONTINUED):

� �

Subcase E-APPABS: � � � 	
 � � � � � � � � � � � � � � � � �
 �� � � � � � �

By the inversion lemma for the typing relation... � � � � � � � � and

� �
 � � � � � � � � � � � � .

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � �

(T-APP)

� 	
 � � � � � � � � � � � � � �
 �� � � � � � � (E-APPABS)

CIS 500, 3 November 27-a

Case T-APP (CONTINUED):
� �

Subcase E-APPABS: � � � 	
 � � � � � � � � � � � � � �
�
�

�
 �� � � � � � �

By the inversion lemma for the typing relation... � � � � � � � � and

� �
 � � � � � � � � � � � � .

By T-SUB, � � � � � � � � .

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � �

(T-APP)

� 	
 � � � � � � � � � � � � � �
 �� � � � � � � (E-APPABS)

CIS 500, 3 November 27-b

Case T-APP (CONTINUED):

� �

Subcase E-APPABS: � � � 	
 � � � � � � � � � � � � � �
�
�

�
 �� � � � � � �

By the inversion lemma for the typing relation... � � � � � � � � and

� �
 � � � � � � � � � � � � .

By T-SUB, � � � � � � � � .

By the substitution lemma, � � � � � � � � , and we are done.

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � �

(T-APP)

� 	
 � � � � � � � � � � � � � �
 �� � � � � � � (E-APPABS)

CIS 500, 3 November 27-c

Inversion Lemma for Typing

Lemma: If � � 	
 � � � � � � � � � � � � , then � � � � � � and � �
 � � � � � � � � � .

Proof: Induction on typing derivations.

CIS 500, 3 November 28

Inversion Lemma for Typing

Lemma: If � � 	
 � � � � � � � � � � � � , then � � � � � � and � �
 � � � � � � � � � .

Proof: Induction on typing derivations.

Case T-SUB: 	
 � � � � � � � � � � � � � � � �

We want to say “By the induction hypothesis...”, but the IH does not

apply (we do not know that � is an arrow type).

CIS 500, 3 November 28-a

Inversion Lemma for Typing

Lemma: If � � 	
 � � � � � � � � � � � � , then � � � � � � and � �
 � � � � � � � � � .

Proof: Induction on typing derivations.

Case T-SUB: 	
 � � � � � � � � � � � � � � � �

We want to say “By the induction hypothesis...”, but the IH does not

apply (we do not know that � is an arrow type). Need another lemma...

Lemma: If � � � � � � � � , then � has the form � � � � � , with � � � � � �

and � � � � � � . (Proof: by induction on subtyping derivations.)

CIS 500, 3 November 28-b

Inversion Lemma for Typing

Lemma: If � � 	
 � � � � � � � � � � � � , then � � � � � � and � �
 � � � � � � � � � .

Proof: Induction on typing derivations.

Case T-SUB: 	
 � � � � � � � � � � � � � � � �

We want to say “By the induction hypothesis...”, but the IH does not

apply (we do not know that � is an arrow type). Need another lemma...

Lemma: If � � � � � � � � , then � has the form � � � � � , with � � � � � �

and � � � � � � . (Proof: by induction on subtyping derivations.)

By this lemma, we know � � � � � � � , with � � � � � � and � � � � � � .

CIS 500, 3 November 28-c

Inversion Lemma for Typing

Lemma: If � � 	
 � � � � � � � � � � � � , then � � � � � � and � �
 � � � � � � � � � .

Proof: Induction on typing derivations.

Case T-SUB: 	
 � � � � � � � � � � � � � � � �

We want to say “By the induction hypothesis...”, but the IH does not

apply (we do not know that � is an arrow type). Need another lemma...

Lemma: If � � � � � � � � , then � has the form � � � � � , with � � � � � �

and � � � � � � . (Proof: by induction on subtyping derivations.)

By this lemma, we know � � � � � � � , with � � � � � � and � � � � � � .

The IH now applies, yielding � � � � � � and � �
 � � � � � � � � � .

CIS 500, 3 November 28-d

Inversion Lemma for Typing

Lemma: If � � 	
 � � � � � � � � � � � � , then � � � � � � and � �
 � � � � � � � � � .

Proof: Induction on typing derivations.

Case T-SUB: 	
 � � � � � � � � � � � � � � � �

We want to say “By the induction hypothesis...”, but the IH does not

apply (we do not know that � is an arrow type). Need another lemma...

Lemma: If � � � � � � � � , then � has the form � � � � � , with � � � � � �

and � � � � � � . (Proof: by induction on subtyping derivations.)

By this lemma, we know � � � � � � � , with � � � � � � and � � � � � � .

The IH now applies, yielding � � � � � � and � �
 � � � � � � � � � .

From � � � � � � and � � � � � � , rule S-TRANS gives � � � � � � .

CIS 500, 3 November 28-e

Inversion Lemma for Typing

Lemma: If � � 	
 � � � � � � � � � � � � , then � � � � � � and � �
 � � � � � � � � � .

Proof: Induction on typing derivations.

Case T-SUB: 	
 � � � � � � � � � � � � � � � �

We want to say “By the induction hypothesis...”, but the IH does not

apply (we do not know that � is an arrow type). Need another lemma...

Lemma: If � � � � � � � � , then � has the form � � � � � , with � � � � � �

and � � � � � � . (Proof: by induction on subtyping derivations.)

By this lemma, we know � � � � � � � , with � � � � � � and � � � � � � .

The IH now applies, yielding � � � � � � and � �
 � � � � � � � � � .

From � � � � � � and � � � � � � , rule S-TRANS gives � � � � � � .

From � �
 � � � � � � � � � and � � � � � � , rule T-SUB gives � �
 � � � � � � � � � ,

and we are done.

CIS 500, 3 November 28-f

Subtyping with Other Features

CIS 500, 3 November 29

Ascription and Casting

Ordinary ascription:

� � � � � �

� � � � � � � � �

(T-ASCRIBE)

� � � � � � � � � (E-ASCRIBE)

CIS 500, 3 November 30

Ascription and Casting

Ordinary ascription:

� � � � � �

� � � � � � � � �

(T-ASCRIBE)

� � � � � � � � � (E-ASCRIBE)

Casting (cf. Java):

� � � � � �

� � � � � � � � �

(T-CAST)

� � � � �

� � � � � � � � �

(E-CAST)

CIS 500, 3 November 30-a

Subtyping and Variants

� � � � � �
� � 1 � � �
� � � � � � � � �
� � 1 � � � � �
� (S-VARIANTW IDTH)

for each 	 � � � � � �

� � � � � �
� � 1 � � �
� � � � � � � � �
� � 1 � � �
�

(S-VARIANTDEPTH)

� � � � � �
� � 1 � � �
� is a permutation of � � � � � � � � 1 � � � �

� � � � � �
� � 1 � � �
� � � � � � � � �
� � 1 � � �
�

(S-VARIANTPERM)

� � � � � � �

� � � � � � � � � � � � � � � � �
(T-VARIANT)

CIS 500, 3 November 31

Subtyping and Lists

� � � � � �

� � � � � � � � � � � � � �

(S-L IST)

I.e., � � � � is a covariant type constructor.

CIS 500, 3 November 32

Subtyping and References

� � � � � � � � � � � �

�
 � � � � � �
 � � �

(S-REF)

I.e., �
 � is not a covariant (nor a contravariant) type constructor.

CIS 500, 3 November 33

Subtyping and Arrays

Similarly...

� � � � � � � � � � � �

�

 � � � � � � �

 � � � �

(S-ARRAY)

CIS 500, 3 November 34

Subtyping and Arrays

Similarly...

� � � � � � � � � � � �

�

 � � � � � � �

 � � � �

(S-ARRAY)

� � � � � �

�

 � � � � � � �

 � � � �

(S-ARRAYJAVA)

This is regarded (even by the Java designers) as a mistake in the design.

CIS 500, 3 November 34-a

References again

Observation: a value of type �
 � � can be used in two different ways: as

a source for values of type � and as a sink for values of type � .

CIS 500, 3 November 35

References again

Observation: a value of type �
 � � can be used in two different ways: as

a source for values of type � and as a sink for values of type � .

Idea: Split �
 � � into three parts:

� � � �
 �
 � : reference cell with “read cabability”

� � � � � � : reference cell with “write cabability”

� �
 � � : cell with both capabilities

CIS 500, 3 November 35-a

Modified Typing Rules

� � � � � � � � � �
 �
 � � �

� � � � � � � � � � �

(T-DEREF)

� �

� � � � � � � � � � � � � � �

(T-ASSIGN)

CIS 500, 3 November 36

Subtyping rules

� � � � � �

� � �
 �
 � � � � � � �
 �
 � �

(S-SOURCE)

� � � � � �

� � � � � � � � � � � � � �

(S-S INK)

�
 � � � � � � � �
 �
 � � (S-REFSOURCE)
�
 � � � � � � � � � � � (S-REFS INK)

CIS 500, 3 November 37

Capabilities

Other kinds of capabilities (e.g., send and receive capabilities on

communication channels, encrypt/decrypt capabilities of cryptographic

keys, ...) can be treated similarly.

CIS 500, 3 November 38

Coercion semantics

(We’re skipping this section.)

CIS 500, 3 November 39

Intersection Types

The inhabitants of � � � � � are terms belonging to both � and � —i.e.,

� � � � � is an order-theoretic meet (greatest lower bound) of � � and � � .

� � � � � � � � � (S-INTER1)

� � � � � � � � � (S-INTER2)

� � � � � � � � � �

� � � � � � � �

(S-INTER3)

� (S-INTER4)

CIS 500, 3 November 40

Intersection Types

Intersection types permit a very flexible form of finitary overloading.

� �

This form of overloading is extremely powerful.

Every strongly normalizing untyped lambda-term can be typed in

the simply typed lambda-calculus with intersection types.

� � type reconstruction problem is undecidable

Intersection types have not been used much in language designs (too

powerful!), but are being intensively investigated as type systems for

intermediate languages in highly optimizing compilers (cf. Church project).

CIS 500, 3 November 41

Union types

Union types are also useful.

� � � � � is an untagged (non-disjoint) union of � � and � �

No tags � � no � � �
 construct. The only operations we can safely

perform on elements of � � � � � � are ones that make sense for both � �

and � � .

N.b.: untagged � � � � � types in C are a source of type safety violations

precisely because they ignores this restriction, allowing any operation on

an element of � � � � � that makes sense for either � � or � � .

Union types are being used recently in type systems for XML processing

languages (cf. XDuce, Xtatic).

CIS 500, 3 November 42

Metatheory of Subtyping

(Preview)

CIS 500, 3 November 43

Syntax-directed rules

In the simply typed lambda-calculus (without subtyping), each rule can be

“read from bottom to top” in a straightforward way.

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � �

(T-APP)

If we are given some � and some � of the form � � � � , we can try to

find a type for � by

1. finding (recursively) a type for � �

2. checking that it has the form � � � � � � �

3. finding (recursively) a type for � �

4. checking that it is the same as � � �

CIS 500, 3 November 44

Technically, the reason this works is that We can divide the “positions” of

the typing relation into input positions (� and �) and output positions (�).
� For the input positions, all metavariables appearing in the premises

also appear in the conclusion (so we can calculate inputs to the

“subgoals” from the subexpressions of inputs to the main goal)

� For the output positions, all metavariables appearing in the

conclusions also appear in the premises (so we can calculate outputs

from the main goal from the outputs of the subgoals)

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � �
(T-APP)

CIS 500, 3 November 45

Syntax-directed sets of rules

The second important point about the simply typed lambda-calculus is

that the set of typing rules is syntax-directed, in the sense that, for every

“input” � and � , there one rule that can be used to derive typing

statements involving � .

E.g., if � is an application, then we must proceed by trying to use T-APP.

If we succeed, then we have found a type (indeed, the unique type) for

� . If it fails, then we know that � is not typable.

� � no backtracking!

CIS 500, 3 November 46

Non-syntax-directedness of typing

When we extend the system with subtyping, both aspects of

syntax-directedness get broken.

1. The set of typing rules now includes two rules that can be used to

give a type to terms of a given shape (the old one plus T-SUB)

� � � � � � � � �

� � � � �

(T-SUB)

2. Worse yet, the new rule T-SUB itself is not syntax directed: the inputs

to the left-hand subgoal are exactly the same as the inputs to the

main goal!

(Hence, if we translated the typing rules naively into a typechecking

function, the case corresponding to T-SUB would cause divergence.)

CIS 500, 3 November 47

Non-syntax-directedness of subtyping

Moreover, the subtyping relation is not syntax directed either.

1. There are lots of ways to derive a given subtyping statement.

2. The transitivity rule

� � � � � � � �

� � � �

(S-TRANS)

is badly non-syntax-directed: the premises contain a metavariable (in

an “input position”) that does not appear at all in the conclusion.

To implement this rule naively, we’d have to guess a value for � !

CIS 500, 3 November 48

What to do?

CIS 500, 3 November 49

What to do?

1. Observation: We don’t need 1000 ways to prove a given typing or

subtyping statement — one is enough.

� � Think more carefully about the typing and subtyping systems to

see where we can get rid of excess flexibility

2. Use the resulting intuitions to formulate new “algorithmic” (i.e.,

syntax-directed) typing and subtyping relations

3. Prove that the algorithmic relations are “the same as” the original

ones in an appropriate sense.

CIS 500, 3 November 49-a

