
CIS 500

Software Foundations

Fall 2003

19 November

CIS 500, 19 November 1

Plans

� Class will be held as usual next Monday and Wednesday.

� Recitations and office hours next week will not be held on Wednesday

afternoon, Thursday, or Friday.

� There will not be a homework assignment over Thanksgiving

weekend.

CIS 500, 19 November 2

Announcement

On Friday, Penn is hosting the New Jersey Programming Languages

Seminar.

If you’d like to attend any of the talks, feel free!

CIS 500, 19 November 3

Metatheory of Typing

CIS 500, 19 November 4

Issue

For the typing relation, we have just one problematic rule to deal with:

subsumption.

� � � � � � � � �

� � � � �

(T-SUB)

We observed last time that this rule is sometimes required when

typechecking applications:

E.g., the term

� � 	
 � �
 � � � � 	 � � � � � � � � � � � �

is not typable without using subsumption.

But we conjectured that applications were the only critical uses of

subsumption.

CIS 500, 19 November 5

Plan

1. Investigate how subsumption is used in typing derivations by looking

at examples of how it can be “pushed through” other rules

2. Use the intuitions gained from this exercise to design a new,

algorithmic typing relation that

� omits subsumption

� compensates for its absence by enriching the application rule

3. Show that the algorithmic typing relation is essentially equivalent to

the original, declarative one

CIS 500, 19 November 6

Example (T-SUB with T-ABS)

...

� � � � � � � � � � � �

...

� � � � �
! T-SUB "

� � � � � � � � � � �

! T-ABS "

� � # � � � � $ � � � � � % �

CIS 500, 19 November 7

Example (T-SUB with T-ABS)

...

� � � � � � � � � � � �

...

� � � � �
! T-SUB "

� � � � � � � � � � �

! T-ABS "

� � # � � � � $ � � � � � % �

becomes

...

� � � � � � � � � � � �

! T-ABS "

� � # � � � � $ � � � � � % � �

! S-REFL "

� � � � � �

...

� � � � �
! S-ARROW "

� � % � � � � � � % �
! T-SUB "

� � # � � � � $ � � � � � % �

CIS 500, 19 November 7-a

Example (T-SUB with T-RCD)

[board]

CIS 500, 19 November 8

Intuitions

These examples show that we do not need T-SUB to “enable” T-ABS or

T-RCD: given any typing derivation, we can construct a derivation with

the same conclusion in which T-SUB is never used immediately before

T-ABS or T-RCD.

What about T-APP?

We’ve already observed that T-SUB is required for typechecking some

applications. So we expect to find that we cannot play the same game

with T-APP as we’ve done with T-ABS and T-RCD. Let’s see why.

CIS 500, 19 November 9

Example (T-SUB with T-APP on the left)

...

� � � � � � � � % � � �

...

 � � � � � � �

...

� � � � � � �
! S-ARROW "

� � � % � � � � � � � % � �
! T-SUB "

� � � � � � � % � �

...

� � � � � � �
! T-APP "

� � � � � � � � �

CIS 500, 19 November 10

Example (T-SUB with T-APP on the left)

...

� � � � � � � � % � � �

...

 � � � � � � �

...

� � � � � � �
! S-ARROW "

� � � % � � � � � � � % � �
! T-SUB "

� � � � � � � % � �

...

� � � � � � �
! T-APP "

� � � � � � � � �

becomes

...

� � � � � � � � % � � �

...

� � � � � � �

...

 � � � � � � �
! T-SUB "

� � � � � � � �
! T-APP "

� � � � � � � � � �

...

� � � � � � �
! T-SUB "

� � � � � � � � �

CIS 500, 19 November 10-a

Example (T-SUB with T-APP on the right)

...
� � � � � � � % � �

...

� � � � � �

...

 � � � � �

(T-SUB)

� � � � � � �
! T-APP "

� � � � � � � � �

CIS 500, 19 November 11

Example (T-SUB with T-APP on the right)

...

� � � � � � � % � �

...

� � � � � �

...

 � � � � �

(T-SUB)

� � � � � � �
! T-APP "

� � � � � � � � �

becomes

...

� � � � � � � % � �

...

 � � � � �

(S-REFL)

 � � � � � �
! S-ARROW "

 � � % � � � � � % � �
! T-SUB "

� � � � � � % � �

...

� � � � � �
! T-APP "

� � � � � � � � �

CIS 500, 19 November 11-a

Intuitions

So we’ve seen that uses of subsumption can be “pushed” from one of

immediately before T-APP’s premises to the other, but cannot be

completely eliminated.

CIS 500, 19 November 12

Example (nested uses of T-SUB)

...

� � � � �

...

� � � �
! T-SUB "

� � � � �

...

� � �
! T-SUB "

� � � �

CIS 500, 19 November 13

Example (nested uses of T-SUB)

...

� � � � �

...

� � � �
! T-SUB "

� � � � �

...

� � �
! T-SUB "

� � � �

becomes

...

� � � � �

...
� � � �

...

� � �
! S-TRANS "

� � �
! T-SUB "

� � � �

CIS 500, 19 November 13-a

Summary

What we’ve learned:

� Uses of the T-SUB rule can be “pushed down” through typing

derivations until they encounter either

1. a use of T-APP or

2. the root fo the derivation tree.

� In both cases, multiple uses of T-SUB can be collapsed into a single

one.

CIS 500, 19 November 14

Summary

What we’ve learned:

� Uses of the T-SUB rule can be “pushed down” through typing

derivations until they encounter either

1. a use of T-APP or

2. the root fo the derivation tree.

� In both cases, multiple uses of T-SUB can be collapsed into a single

one.

This suggests a notion of “normal form” for typing derivations, in which

there is

� exactly one use of T-SUB before each use of T-APP

� one use of T-SUB at the very end of the derivation

� no uses of T-SUB anywhere else.

CIS 500, 19 November 14-a

Algorithmic Typing

The next step is to “build in” the use of subsumption in application rules,
by changing the T-APP rule to incorporate a subtyping premise.

� �

� � � � � � � � � �

Given any typing derivation, we can now

1. normalize it, to move all uses of subsumption to either just before
applications (in the right-hand premise) or at the very end

2. replace uses of T-APP with T-SUB in the right-hand premise by uses
of the extended rule above

This yields a derivation in which there is just one use of subsumption, at
the very end!

CIS 500, 19 November 15

Minimal Types

But... if subsumption is only used at the very end of derivations, then it is

actually not needed in order to show that any term is typable!

It is just used to give more types to terms that have already been shown

to have a type.

In other words, if we dropped subsumption completely (after refining the

application rule), we would still be able to give types to exactly the same

set of terms — we just would not be able to give as many types to some

of them.

If we drop subsumption, then the remaining rules will assign a unique,

minimal type to each typable term.

For purposes of building a typechecking algorithm, this is enough.

CIS 500, 19 November 16

Final Algorithmic Typing Rules

�
 � � �

� � � � � �

(TA-VAR)

� � �
 � � � � � � � � �

� � � � �
 � � � � � � � � � � �

(TA-ABS)

� �

� � � � � � � � � � �

(TA-APP)

for each � � � � � � � � �

�
 � � � � � � �
 � � �

(TA-RCD)

� � � � � � 	 � 	 � � � � �
 � � � � � � �
 � � �

� � � � � � � � � � �

(TA-PROJ)

CIS 500, 19 November 17

Soundness of the algorithmic rules

Theorem: If � � � � � � , then � � � � � .

CIS 500, 19 November 18

Completeness of the algorithmic rules

Theorem [Minimal Typing]: If � � � � � , then � � � � � � for some � � � � .

CIS 500, 19 November 19

Completeness of the algorithmic rules

Theorem [Minimal Typing]: If � � � � � , then � � � � � � for some � � � � .

Proof: Homework.

(N.b.: All the messing around with transforming derivations was just to

build intuitions and decide what algorithmic rules to write down and what

property to prove: the proof itself is a straightforward induction on

typing derivations.)

CIS 500, 19 November 19-a

Meets and Joins

CIS 500, 19 November 20

A Problem with Conditional Expressions

CIS 500, 19 November 21

Calculating Meets and Joins

CIS 500, 19 November 22

