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Plans

� Class will be held as usual next Monday and Wednesday.

� Recitations and office hours next week will not be held on Wednesday

afternoon, Thursday, or Friday.

� There will not be a homework assignment over Thanksgiving

weekend.
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Announcement

On Friday, Penn is hosting the New Jersey Programming Languages

Seminar.

If you’d like to attend any of the talks, feel free!
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Metatheory of Typing
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Issue

For the typing relation, we have just one problematic rule to deal with:

subsumption.

� � � � � � � � �

� � � � �

(T-SUB)

We observed last time that this rule is sometimes required when

typechecking applications:

E.g., the term

� � 	 
 � � 
  � � � � 	 � � � � � � � � � � � �

is not typable without using subsumption.

But we conjectured that applications were the only critical uses of

subsumption.
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Plan

1. Investigate how subsumption is used in typing derivations by looking

at examples of how it can be “pushed through” other rules

2. Use the intuitions gained from this exercise to design a new,

algorithmic typing relation that

� omits subsumption

� compensates for its absence by enriching the application rule

3. Show that the algorithmic typing relation is essentially equivalent to

the original, declarative one
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Example (T-SUB with T-ABS)

...

� � � � � � � � � � � �

...

� � � �  �
! T-SUB "

� � � � � � � � � �  �

! T-ABS "

� � # � � � � $ � � � � � %  �
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Example (T-SUB with T-ABS)

...

� � � � � � � � � � � �

...

� � � �  �
! T-SUB "

� � � � � � � � � �  �

! T-ABS "

� � # � � � � $ � � � � � %  �

becomes

...

� � � � � � � � � � � �

! T-ABS "

� � # � � � � $ � � � � � % � �

! S-REFL "

� � � � � �

...

� � � �  �
! S-ARROW "

� � % � � � � � � %  �
! T-SUB "

� � # � � � � $ � � � � � %  �
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Example (T-SUB with T-RCD)

[board]
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Intuitions

These examples show that we do not need T-SUB to “enable” T-ABS or

T-RCD: given any typing derivation, we can construct a derivation with

the same conclusion in which T-SUB is never used immediately before

T-ABS or T-RCD.

What about T-APP?

We’ve already observed that T-SUB is required for typechecking some

applications. So we expect to find that we cannot play the same game

with T-APP as we’ve done with T-ABS and T-RCD. Let’s see why.
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Example (T-SUB with T-APP on the left)

...

� � � � � � � � % � � �

...

 � � � � � � �

...

� � � � �  � �
! S-ARROW "

� � � % � � � � �  � � %  � �
! T-SUB "

� � � � �  � � %  � �

...

� � � � �  � �
! T-APP "

� � � � � � �  � �
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Example (T-SUB with T-APP on the left)

...

� � � � � � � � % � � �

...

 � � � � � � �

...

� � � � �  � �
! S-ARROW "

� � � % � � � � �  � � %  � �
! T-SUB "

� � � � �  � � %  � �

...

� � � � �  � �
! T-APP "

� � � � � � �  � �

becomes

...

� � � � � � � � % � � �

...

� � � � �  � �

...

 � � � � � � �
! T-SUB "

� � � � � � � �
! T-APP "

� � � � � � � � � �

...

� � � � �  � �
! T-SUB "

� � � � � � �  � �
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Example (T-SUB with T-APP on the right)

...
� � � � �  � � %  � �

...

� � � � �  �

...

 � � �  � �

(T-SUB)

� � � � �  � �
! T-APP "

� � � � � � �  � �
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Example (T-SUB with T-APP on the right)

...

� � � � �  � � %  � �

...

� � � � �  �

...

 � � �  � �

(T-SUB)

� � � � �  � �
! T-APP "

� � � � � � �  � �

becomes

...

� � � � �  � � %  � �

...

 � � �  � �

(S-REFL)

 � � � �  � �
! S-ARROW "

 � � %  � � � �  � %  � �
! T-SUB "

� � � � �  � %  � �

...

� � � � �  �
! T-APP "

� � � � � � �  � �
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Intuitions

So we’ve seen that uses of subsumption can be “pushed” from one of

immediately before T-APP’s premises to the other, but cannot be

completely eliminated.
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Example (nested uses of T-SUB)

...

� � � � �

...

� � � �
! T-SUB "

� � � � �

...

� � �  
! T-SUB "

� � � �  
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Example (nested uses of T-SUB)

...

� � � � �

...

� � � �
! T-SUB "

� � � � �

...

� � �  
! T-SUB "

� � � �  

becomes

...

� � � � �

...
� � � �

...

� � �  
! S-TRANS "

� � �  
! T-SUB "

� � � �  
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Summary

What we’ve learned:

� Uses of the T-SUB rule can be “pushed down” through typing

derivations until they encounter either

1. a use of T-APP or

2. the root fo the derivation tree.

� In both cases, multiple uses of T-SUB can be collapsed into a single

one.
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Summary

What we’ve learned:

� Uses of the T-SUB rule can be “pushed down” through typing

derivations until they encounter either

1. a use of T-APP or

2. the root fo the derivation tree.

� In both cases, multiple uses of T-SUB can be collapsed into a single

one.

This suggests a notion of “normal form” for typing derivations, in which

there is

� exactly one use of T-SUB before each use of T-APP

� one use of T-SUB at the very end of the derivation

� no uses of T-SUB anywhere else.
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Algorithmic Typing

The next step is to “build in” the use of subsumption in application rules,
by changing the T-APP rule to incorporate a subtyping premise.

� � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � �

Given any typing derivation, we can now

1. normalize it, to move all uses of subsumption to either just before
applications (in the right-hand premise) or at the very end

2. replace uses of T-APP with T-SUB in the right-hand premise by uses
of the extended rule above

This yields a derivation in which there is just one use of subsumption, at
the very end!
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Minimal Types

But... if subsumption is only used at the very end of derivations, then it is

actually not needed in order to show that any term is typable!

It is just used to give more types to terms that have already been shown

to have a type.

In other words, if we dropped subsumption completely (after refining the

application rule), we would still be able to give types to exactly the same

set of terms — we just would not be able to give as many types to some

of them.

If we drop subsumption, then the remaining rules will assign a unique,

minimal type to each typable term.

For purposes of building a typechecking algorithm, this is enough.
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Final Algorithmic Typing Rules

� 
 � � �

� � � � � �

(TA-VAR)

� � � 
 � � � � � � � � �

� � � � � 
 � � � � � � � � � � �

(TA-ABS)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � �

(TA-APP)

for each � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � 
 � � � � � � � 
 � � �

(TA-RCD)

� � � � � � 	 � 	 � � � � � 
 � � � � � � � 
 � � �

� � � � � � � � � � �

(TA-PROJ)
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Soundness of the algorithmic rules

Theorem: If � � � � � � , then � � � � � .
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Completeness of the algorithmic rules

Theorem [Minimal Typing]: If � � � � � , then � � � � � � for some � � � � .
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Completeness of the algorithmic rules

Theorem [Minimal Typing]: If � � � � � , then � � � � � � for some � � � � .

Proof: Homework.

(N.b.: All the messing around with transforming derivations was just to

build intuitions and decide what algorithmic rules to write down and what

property to prove: the proof itself is a straightforward induction on

typing derivations.)
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Meets and Joins
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A Problem with Conditional Expressions
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Calculating Meets and Joins
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