

Adding Booleans

Suppose we want to add booleans and conditionals to the language we have been discussing.
For the declarative presentation of the system, we just add in the appropriate syntactic forms, evaluation rules, and typing rules.

$$
\begin{gather*}
\Gamma \vdash \text { true : Bool } \\
\Gamma \vdash \text { false : Bool } \\
\frac{\Gamma \vdash \mathrm{t}_{1}: \text { Bool } \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T} \quad \Gamma \vdash \mathrm{t}_{3}: \mathrm{T}}{\Gamma \vdash \text { if } \mathrm{t}_{1} \text { then } \mathrm{t}_{2} \text { else } \mathrm{t}_{3}: \mathrm{T}}
\end{gather*}
$$

(T-TRUE)
(T-FALSE)

Meets and Joins

A Problem with Conditional Expressions

For the algorithmic presentation of the system, however, we encounter a little difficulty.

What is the minimal type of
if true then $\{x=$ true, $y=f a l s e\}$ else $\{x=$ true, $z=$ true $\}$
$?$

The Algorithmic Conditional Rule

More generally, we can use subsumption to give an expression

$$
\text { if } t_{1} \text { then } t_{2} \text { else } t_{3}
$$

any type that is a possible type of both t_{2} and t_{3}.
So the minimal type of the conditional is the least common supertype (or join) of the minimal type of t_{2} and the minimal type of t_{3}.

$$
\begin{equation*}
\Gamma \mapsto \mathrm{t}_{1}: \text { Bool } \quad \Gamma \mapsto \mathrm{t}_{2}: \mathrm{T}_{2} \quad \Gamma \mapsto \mathrm{t}_{3}: \mathrm{T}_{3} \tag{T-IF}
\end{equation*}
$$

$$
\Gamma \mapsto \text { if } \mathrm{t}_{1} \text { then } \mathrm{t}_{2} \text { else } \mathrm{t}_{3}: \mathrm{T}_{2} \vee \mathrm{~T}_{3}
$$

Existence of Joins

Theorem: For every pair of types S and T, there is a type J such that

1. S <: J
2. $\mathrm{T}<: \mathrm{J}$
3. If K is a type such that $\mathrm{S}<: \mathrm{K}$ and $\mathrm{T}<: \mathrm{K}$, then $\mathrm{J}<: \mathrm{K}$.
I.e., J is the smallest type that is a supertype of both S and T.

The Algorithmic Conditional Rule

More generally, we can use subsumption to give an expression

$$
\text { if } t_{1} \text { then } t_{2} \text { else } t_{3}
$$

any type that is a possible type of both t_{2} and t_{3}.
So the minimal type of the conditional is the least common supertype (or join) of the minimal type of t_{2} and the minimal type of t_{3}.

$$
\begin{equation*}
\frac{\Gamma \mapsto \mathrm{t}_{1}: \text { Bool } \quad \Gamma \mapsto \mathrm{t}_{2}: \mathrm{T}_{2} \quad \Gamma \mapsto \mathrm{t}_{3}: \mathrm{T}_{3}}{\Gamma \mapsto \text { if } \mathrm{t}_{1} \text { then } \mathrm{t}_{2} \text { else } \mathrm{t}_{3}: \mathrm{T}_{2} \vee \mathrm{~T}_{3}} \tag{T-IF}
\end{equation*}
$$

Does such a type exist for every T_{2} and T_{3} ??

Examples

What are the joins of the following pairs of types?

1. \{x:Bool,y:Bool\} and \{y:Bool,z:Bool\}?
2. $\{x:$ Bool $\}$ and $\{y:$ Bool $\} ?$
3. $\{x:\{a: B o o l, b: B o o l\}\}$ and $\{x:\{b: B o o l, c: B o o l\}, y: B o o l\} ?$
4. \{\} and Bool?
5. $\{x:\{ \}\}$ and $\{x: B o o l\} ?$
6. Top $\rightarrow\{x:$ Bool $\}$ and Top $\rightarrow\{y:$ Bool $\}$?
7. $\{x: B o o l\} \rightarrow T o p$ and $\{y: B o o l\} \rightarrow T o p ?$

Meets

To calculate joins of arrow types, we also need to be able to calculate meets (greatest lower bounds)!

Unlike joins, meets do not necessarily exist.
E.g., Bool \rightarrow Bool and $\}$ have no common subtypes, so they certainly don't have a greatest one!

However...

Calculating Joins

What are the meets of the following pairs of types?

1. $\{x: B o o l, y: B o o l\}$ and $\{y: B o o l, z: B o o l\} ?$
2. $\{x: B o o l\}$ and $\{y: B o o l\} ?$
3. $\{\mathrm{x}:\{\mathrm{a}:$ Bool,b:Bool $\}$ and $\{\mathrm{x}:\{\mathrm{b}:$ Bool, $\mathrm{c}:$ Bool $\}, \mathrm{y}:$ Bool $\}$?
4. \{\} and Bool?
5. $\{x:\{ \}\}$ and $\{x: B o o l\} ?$
6. Top $\rightarrow\{\mathrm{x}:$ Bool $\}$ and $\mathrm{Top} \rightarrow\{\mathrm{y}:$ Bool $\}$?
7. $\{x:$ Bool $\} \rightarrow$ Top and $\{y:$ Bool $\} \rightarrow$ Top?

Existence of Meets

Theorem: For every pair of types S and T, if there is any type N such that $N<: S$ and $N<: T$, then there is a type M such that

1. $M<: S$
2. $M<: T$
3. If 0 is a type such that $0<: S$ and $0<: T$, then $0<: M$.
l.e., M (when it exists) is the largest type that is a subtype of both S and T.

Jargon: In the simply typed lambda calculus with subtyping, records, and booleans...

- The subtype relationhas joins
- The subtype relation has bounded meets

Calculating Meets

