
CIS 500

Software Foundations

Fall 2003

24 November

CIS 500, 24 November 1

Plans

� This week: Chapter 18 (not 19, as earlier predicted)

� Next week: Chapter 19

� Final class: Monday, December 8 (review session)

� Final exam: Wednesday, December 17th

� There will be a homework assignment over Thanksgiving (sorry

about that!). But it will be due next Wednesday, not Monday.

CIS 500, 24 November 2

On to Objects

CIS 500, 24 November 3

A Change of Pace

We’ve spent the past 10 weeks developing tools for defining and

reasoning about a variety of programming language features.

Now it’s time to use these tools for something more ambitious.

CIS 500, 24 November 4

Case study: object-oriented programming

Plan:

1. Identify some characteristic “core features” of object-oriented

programming

2. Develop two different analyses of these features:

(a) A translation into a lower-level language

(b) A direct, high-level formalization of a simple object-oriented

language (“Featherweight Java”)

CIS 500, 24 November 5

The Translational Analysis

Our first goal will be to show how many of the basic features of
object-oriented languages

objects
dynamic dispatch
encapsulation of state
inheritance
self (this) and super
late binding

can be understood as “derived forms” in a lower-level language with a
rich collection of primitive features:

(higher-order) functions
records
references
recursion
subtyping

CIS 500, 24 November 6

For simple objects and classes, this translational analysis works very well.

When we come to more complex features (in particular, classes with

� � � �), it becomes less satisfactory, leading us to the more direct

treatment in the following chapter.

CIS 500, 24 November 7

History

CIS 500, 24 November 8

Simula-67

Beta

Smalltalk 72,
Smalltalk 80

CLOS

Dylan Cecil

Objective C, etc.

C++

Java

C#

Self

CIS 500, 24 November 9

Concepts

CIS 500, 24 November 10

The Essence of Objects

What “is” object-oriented programming?

CIS 500, 24 November 11

The Essence of Objects

What “is” object-oriented programming?

This question has been a subject of debate for decades. Such arguments

are always inconclusive and seldom very interesting.

CIS 500, 24 November 11-a

The Essence of Objects

What “is” object-oriented programming?

This question has been a subject of debate for decades. Such arguments

are always inconclusive and seldom very interesting.

However, it is easy to identify some core features that are shared by

most OO languages and that, together, support a distinctive and useful

programming style.

CIS 500, 24 November 11-b

Dynamic dispatch

Perhaps the most basic characteristic of object-oriented programming is

dynamic dispatch: when an operation is invoked on an object, the

ensuing behavior depends on the object itself, rather than being fixed

once and for all (as when we apply a function to an argument).

Two objects of the same type (i.e., responding to the same set of

operations) may be implemented internally in completely different ways.

CIS 500, 24 November 12

Example

� � � � � � �

� � � 	
 � �

� � � � � � 	
 	 � � � � � � � � � 	 � �

� � � � � � � 	
 	
� � � � � � � � � 	 � �

�
� � � � � � � 	 � � � � � � �

� � � � � � 	
 	 � � � � � � � � � 	 � �

�
� � � � � � � 	 � � � � � � �

� � � � � � 	
 	
� � � � � � � � � � 	 � �

�

Note: � � � � � � � � ! � � and � � � � " � � � ! � � invoke completely different code!

CIS 500, 24 November 13

Encapsulation

In most OO languages, each object consists of some internal state

encapsulated with a collection of method implementations operating on

that state.

� state directly accessible to methods

� state invisible / inaccessible from outside the object

CIS 500, 24 November 14

Example

In Java, encapsulation of internal state is optional. For full encapsulation,
fields must be marked � � � � � � � � � :

� � � � � � �

� � � � � � � � � � � � 	

 � �

� � � � � � 	
 	 � � � � � � � � � 	 � �

� � � � � � � 	
 	
� � � � � � � � � 	 � �

�
� � � � � � � 	 � � � � � � �

� � � � � � 	
 	 � � � � � � � � � 	 � �

�
� � � � � � � 	 � � � � � � �

� � � � � � 	
 	
� � � � � � � � � � 	 � �

�

CIS 500, 24 November 15

Side note: encapsulation

Encapsulation is arguably a little less fundamental than dynamic dispatch,

in the sense that there are several OO languages (e.g., CLOS, Dylan, and

Cecil) that do not encapsulate state with methods.

These languages are based, instead, on multi-methods, a form of ad-hoc

polymorphism.

Although their basic mechanisms are quite different, the higher-level

programming idioms (classes, inheritance, etc.) arising in multi-method

languages are surprisingly similar to those in “mainstream” OO languages.

(Side note for Java experts: we’re also eliding some subtleties involving

accessing the � � � � � � � � � fields of other objects of the same class...)

CIS 500, 24 November 16

Side note: Objects vs. ADTs

The encapsulation of state with methods offered by objects is a form of

information hiding.

A somewhat different form of information hiding is embodied in the

notion of an abstract data type (ADT).

CIS 500, 24 November 17

Side note: Objects vs. ADTs

An ADT comprises:

� A hidden representation type �

� A collection of operations for creating and manipulating elements of

type � .

Similar to OO encapsulation in that only the operations provided by the

ADT are allowed to directly manipulate elements of the abstract type.

But different in that there is just one (hidden) representation type and

just one implementation of the operations — no dynamic dispatch.

Both styles have advantages.

N.b. in the OO community, the term “abstract data type” is often used as

more or less a synonym for “object type.” This is unfortunate, since it

confuses two rather different concepts.

CIS 500, 24 November 18

Subtyping

The “type” (or “interface” in Smalltalk terminology) of an object is just

the set of operations that can be performed on it (and the types of their

parameters and results); it does not include the internal representation.

Object interfaces fit naturally into a subtype relation.

An interface listing more operations is “better” than one listing

fewer operations.

This gives rise to a natural and useful form of polymorphism: we can

write one piece of code that operates uniformly on any object whose

interface is “at least as good as � ” (i.e., any object that supports at least
the operations in �).

CIS 500, 24 November 19

Example

� � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �

�
� � �

� �
 � � � � � � �

� � � �
 � � � � � � � � � � � �

� � � �
 � � � � � � � � � � � �

CIS 500, 24 November 20

Inheritance

Objects that share parts of their interfaces will typically (though not

always) share parts of their behaviors.

To avoid duplication of code, want to write the implementations of these

behaviors in just one place.

� � inheritance

CIS 500, 24 November 21

Inheritance

Basic mechanism of inheritance: classes

A class is a data structure that can be

� instantiated to create new objects (“instances”)

� refined to create new classes (“subclasses”)

N.b.: some OO languages offer an alternative (but fundamentally fairly

similar) mechanism, called delegation, which allows new objects to be

derived by refining the behavior of existing objects.

CIS 500, 24 November 22

Example
� � � � � � �

� � � � � � � � � � � � 	

 � �

� � � � � � 	
 	 � � � � � � � � � 	 � �

� � � � � � � 	
 	
� � � � � � � � � 	 � �

�
� � � � � � � 	 � � � � � � �

� � � � � � � 	
 	 � � � � � � � � � � 	 � �

�

An instance of � has methods ! , � , and � . The first two are inherited

from � .

CIS 500, 24 November 23

Late binding

Most OO languages offer an extension of the basic mechanism of classes

and inheritance called late binding or open recursion.

Late binding allows a method within a class to call another method via a

special “pseudo-variable” � � � � . If the second method is overridden by

some subclass, then the behavior of the first method automatically

changes as well.

Though quite useful in many situations, late binding is rather tricky, both

to define (as we will see) and to use tastefully. For this reason, it is

sometimes deprecated in practice.

CIS 500, 24 November 24

Examples

� � � � � � �

� � � � � � � � � � � � 	

 � �

� � � � � � 	
 	 � � � � � � � � � 	 � �

� � � � � � � 	
 	
� � � � � � � � � � � � � � � � � �

�
� � � � � � � 	 � � � � � � �

� � � � � � 	
 	 � � � � � � � � � � � 	 � �

�

What does � � � � � � � � � � � return?

What does � � � � � � � � � � � return?

CIS 500, 24 November 25

Calling “super”

It is sometimes convenient to “re-use” the functionality of an overridden

method.

Java provides a mechanism called � � � � � for this purpose.

CIS 500, 24 November 26

Example
� � � � � � �

� � � � � � � � � � � � 	

 � �

� � � � � � 	
 	 � � � � � � � � � 	 � �

� � � � � � � 	
 	
� � � � � � � � � � � � � � � � � �

�
� � � � � � � 	 � � � � � � �

� � � � � � 	
 	 � � � � � � � � � � � � � � � � � � � � �

�

What does � � � � � � � � � � � return?

CIS 500, 24 November 27

Getting down to details

(in the lambda-calculus)...

CIS 500, 24 November 28

Objects

� � � � � � � � � � � � �

� � � � � � 	
 � � � � � �

� � � � � 	
 � � � � �
 � � � � � � � � � � �

� � �
 " � � � � � �

where

" � � � � � � � � � � �
 � � � � � � � � � � �
 � � � � � � � � � �

CIS 500, 24 November 29

Objects

� � � � � � �
 " � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � �
 " � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� � �

CIS 500, 24 November 30

Object Generators
� � � " � � � � � � �

� 	
 � � � � � � � � � � � � � � �

� � � � � � 	
 � � � � � �

� � � � � 	
 � � � � �
 � � � � � � � � � � �

� � � � � " � � � � � �
 � � � � � " � � � � � �

CIS 500, 24 November 31

Subtyping

� � � � � " � � � � � � � � � � �
 � � � � � � � � � � �
 � � � � � � � � � � � � � �
 � � � � � � � � � � �

� � � � � � � � " � � � � � � �

� 	
 � � � � � � � � � � � � � � �

� � � � � � 	
 � � � � � �

� � � � � 	
 � � � � �
 � � � � � � � � �

� � � � � � � 	
 � � � � �
 � � � �

� � � � � � � � � � " � � � � � �
 � � � � � � � � � � " � � � � � �

CIS 500, 24 November 32

Subtyping

� � � � � � � � � � � " � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � �

CIS 500, 24 November 33

Grouping Instance Variables

Rather than a single reference cell, the states of most objects consist of

a number of instance variables or fields.

It will be convenient (later) to group these into a single record.

� � � � � � � � � � � � � � � � �

� � � � � � 	
 � � � � � � � � �

� � � � � 	
 � � � � � �
 � � � � � � � � � � � � � �

" � � � � � � � � �

� � �
 � � � � � � � �

CIS 500, 24 November 34

Simple Classes

The definitions of � � � " � � � � � � and � � � � � � � � " � � � � � � are identical except

for the � � � � � method.

This violates a basic principle of software engineering:

Each piece of behavior should be implemented in just one place in

the code.

CIS 500, 24 November 35

Reusing Methods

Idea: could we just re-use the methods of some existing object to build a

new object?

� � � � � " � � � � � � � � � ! " � � � � � � �

� �
 " � � � � � � � � � � � � � � � � �

� � � � � � � � �

� � � � � � � �

� � � � � � � 	
 � � � � �
 � � � �

CIS 500, 24 November 36

Reusing Methods

Idea: could we just re-use the methods of some existing object to build a

new object?

� � � � � " � � � � � � � � � ! " � � � � � � �

� �
 " � � � � � � � � � � � � � � � � �

� � � � � � � � �

� � � � � � � �

� � � � � � � 	
 � � � � �
 � � � �

No: This doesn’t work properly because the � � � � � method does not have

access to the instance variable � of the original counter.

� � classes

CIS 500, 24 November 36-a

Classes

A class is a run-time data structure that can be

1. instantiated to yield new objects

2. extended to yield new classes

CIS 500, 24 November 37

Classes

To avoid the problem we observed before, what we need to do is to

separate the definition of the methods

� � � � � � � " � � � � �

� �
 " � � � � � � � � �

� � � � � � 	
 � � � � � � � � �

� � � � � 	
 � � � � � �
 � � � � � � � � � � � � � �

� � � � � � � � � " � � � �
 " � � � � � � � � � � " � � � � � �

from the act of binding these methods to a particular set of instance

variables:

� � � " � � � � � � �

� 	
 � � � � � � � � � � � � � � � � � � �

� � � � � � � " � � � � � �

� � � � � " � � � � � �
 � � � � � " � � � � � �

CIS 500, 24 November 38

Defining a Subclass

� � � � � " � � � � � � " � � � � �

� �
 " � � � � � � � � �

� � � � � � � �

� � � � � � � � " � � � � � � �

� � � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � 	
 � � � � � �
 � � � �

� � � � � � � " � � � � � � " � � � �
 " � � � � � � � � � � � � � � � " � � � � � �

� � � � � � � � " � � � � � � �

� 	
 � � � � � " � � � � � � " � � � � � �

� � � � � � � � � � " � � � � � �
 � � � � � � � � � � " � � � � � �

CIS 500, 24 November 39

Adding instance variables

In general, when we define a subclass we will want to add new instances

variables to its representation.

� � � � � � " � � � � � � � � � � �
 � � � � � � � � � � �
 � � � � � � � � �

� � � � �
 � � � � � � � � � � � � � � �
 � � � � � � � � � � �

� � � � � � " � � � � � � � � � � � �
 � � � � � � �
 � � � � � � � �

� � � � � � " � � � � � � " � � � � �

� �
 � � � � � � " � � � � � � � � �

� � � � � � � �

� � � � � � " � � � � � � " � � � � � � �

� � � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � 	
 � � � � � �
 � � � � � �

� � � � � � � � 	
 � � � � � �
 � � � � � � � �

� � � � � � � � " � � � � � � " � � � �
 � � � � � � " � � � � � � � � � � � � � � � � " � � � � � �

CIS 500, 24 November 40

Notes:

� � � � � � � " � � � � � � " � � � � both extends (with � � � � � �) and overrides (with a

new � � � � �) the definition of � � � � � � � " � � � �

� subtyping is essential here (in the definition of � � � � �)

� � � � � � " � � � � � � " � � � � �

� �
 � � � � � � " � � � � � � � � �

� � � � � � � �

� � � � � � " � � � � � � " � � � � � � �

� � � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � 	
 � � � � � �
 � � � � � �

� � � � � � � � 	
 � � � � � �
 � � � � � � � �

CIS 500, 24 November 41

Calling � � � � �

Suppose (for the sake of the example) that we wanted every call to � � �

to first back up the current state. We can avoid copying the code for

� � � � � � by making � � � use the � � � � � � and � � � methods from � � � � � .

� � � � � � � � � � � " � � � � � � " � � � � �

� �
 � � � � � � " � � � � � � � � �

� � � � � � � �

� � � � � � � " � � � � � � " � � � � � � �

� � � � � � � � � � � � �

� � � � � 	
 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � " � � � � � � " � � � �
 � � � � � � " � � � � � � � � � � � � � � � � " � � � � � �

CIS 500, 24 November 42

