
CIS 500

Software Foundations

Fall 2003

26 November

CIS 500, 26 November 1



Calling between methods

Let’s define a class of counters with � � � , � � � , and� � � methods:

� � � � 	 
 � � � � � 
 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � 	 
 � � � � � � � � � �

� � � � 	 
 � � � � � � � �


 � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � 
 � � � � � � � � �

CIS 500, 26 November 2



Calling between methods

Let’s define a class of counters with � � � , � � � , and� � � methods:

� � � � 	 
 � � � � � 
 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � 	 
 � � � � � � � � � �

� � � � 	 
 � � � � � � � �


 � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � 
 � � � � � � � � �

Bad style: The functionality of� � � could be expressed in terms of the
functionality of � � � and � � � .

Can we rewrite this class so that the � � � / � � � functionality appears just
once?

CIS 500, 26 November 2-a



Better...
� � � � 	 
 � � � � � � � � � �

� � � � 	 
 � � � � � � � �

� � �
� � � � � � � � � � � 	 
 � � � � �


 � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � 
 � � � � � � � � � � � 
 � � � � � � � �

Check: the type of the inner � -abstraction is � � � � 	 
 � � � � � � � � � 	 
 � � � � , so
the type of the � � � expression is � � � � 	 
 � � � � .

This is just a definition of a set (record) of mutually recursive functions.

(We saw something similar in the� � � � � � /� � 	 � � example in 11.11.)

CIS 500, 26 November 3



Note that the fixed point in � � � � 	 
 � � � � � � � � � �

� � � � 	 
 � � � � � � � �

� � �
� � � � � � � � � � � 	 
 � � � � �


 � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � 
 � � � � � � � � � � � 
 � � � � � � � �

is “closed” — we “tie the knot” when we build the record.

So this does not model the behavior of � � � � (or � � � � ) in real OO
languages.

CIS 500, 26 November 4



Idea: move the application of � � � from the class definition...
� � � � 	 
 � � � � � � � � � �

� � � � 	 
 � � � � � � � �

� � � � � � � � � � 	 
 � � � � �


 � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � 
 � � � � � � � � � � � 
 � � � � � � �

...to the object creation function:

� � � � � � � 	 
 � � � � �

� � � � � � � � � � � � � 
 � � � � � � � � �

� � � � � � � � 	 
 � � � � � � � � � � � �

In essence, we are switching the order of � � � and � � � � 	 
 � � � � � � � � � �

CIS 500, 26 November 5



Note that we have changed the types of classes from...
� � � � 	 
 � � � � � � � � � �

� � � � 	 
 � � � � � � � �

� � �
� � � � � � � � � � � 	 
 � � � � �


 � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � 
 � � � � � � � � � � � 
 � � � � � � � �

� � � � � � 	 
 � � � � � � � � � � � 	 
 � � � � � � � � � � � � 	 
 � � � �

... to:

� � � � 	 
 � � � � � � � � � �

� � � � 	 
 � � � � � � � �

� � � � � � � � � � 	 
 � � � � �


 � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � 
 � � � � � � � � � � � 
 � � � � � � �

� � � � � � 	 
 � � � � � � � � � � � 	 
 � � � � � � � � � � � � 	 
 � � � � � � � � � 	 
 � � � �

CIS 500, 26 November 6



Using � � � �

Let’s continue the example by defining a new class of counter objects (a

subclass of set-counters) that keeps a record of the number of times the

� � � method has ever been called.

� � � � � � 	 
 � � � � � 
 � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � 	 
 � � � � � � � � 
 � � � � � � � � � � � � � � � � � � �

CIS 500, 26 November 7



� � � � � � 	 
 � � � � � � � � � �

� � � � � � � � � 	 
 � � � � � � � �

� � � � � � � � � � � � 	 
 � � � � �

� � � � 
 � � � � � � � � 	 
 � � � � � � � � � � � � � � � �


 � � � � � 
 � � � � � � � �

� � � � � � � � � � � � � � � � � � 
 � � � � � � � � � � � � 
 � � � � � � � � � �

� � � � � 
 � � � �� � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� �
� � � � � � 	 
 � � � � � � � � � � � � � � � � 	 
 � � � � � � � � � � � � � � 	 
 � � � � � � � � � � � 	 
 � � � �

Notes:

� the methods use both � � � � (which is passed as a parameter) and

� 
 � � � (which is constructed using � � � � and the instance variables)

� the� � � in � 
 � � � will call the � � � defined here, which calls the
superclass � � �

� suptyping plays a crucial role (twice) in the call to � � � � 	 
 � � � � � � � � �

CIS 500, 26 November 8



One more refinement...

CIS 500, 26 November 9



A small fly in the ointment

The implementation we have given for instrumented counters is not very

useful because calling the object creation function

� � � � � � � � � 	 
 � � � � �

� � � � � � � � � � � � � 
 � � � � � � � � � � � � � � � �

� � � �� � � � � � 	 
 � � � � � � � � � � � �

will cause the evaluator to diverge!

Intuitively (see TAPL for details), the problem is the “unprotected” use of

� � � � in the call to � � � � 	 
 � � � � � � � � � in � � � � � � 	 
 � � � � � � � � � :

� � � � � � 	 
 � � � � � � � � � �

� � � � � � � � � 	 
 � � � � � � � �

� � � � � � � � � � � � 	 
 � � � � �

� � � � 
 � � � � � � � � 	 
 � � � � � � � � � � � � � � � �

� � �

CIS 500, 26 November 10



To see why this diverges, consider a simpler example:
� � � � � � � � � � � � � �

� � � �

� � � � �

� � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

Now:

� � � � � � � � � � � � � � � �

� � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � uh oh...

CIS 500, 26 November 11



One possible solution

Idea: “delay” � � � � by putting a dummy abstraction in front of it...

� � � � 	 
 � � � � � � � � � �

� � � � 	 
 � � � � � � � �

� � � � � � � � � � � � � � � 	 
 � � � � �

� � � � � � � �


 � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � 
 � � � � � � � � � � 
 � � � � � � � � 
 � � � � � � � � 
 � � � � � � �

� �
� � � � 	 
 � � � � � � � � � � � 	 
 � � � � � � � � � � � � � � � � � � 	 
 � � � � � � � � � � � � � � � � 	 
 � � � � �

� � � � � � � 	 
 � � � � �

� � � � � � � � � � � � � 
 � � � � � � � � �

� � � � � � � � 	 
 � � � � � � � � � � � 
 � � � �

CIS 500, 26 November 12



Similarly:
� � � � � � 	 
 � � � � � � � � � �

� � � � � � � � � 	 
 � � � � � � � �

� � � � � � � � � � � � � � � � � 	 
 � � � � �

� � � � � � � �

� � � � 
 � � � � � � � � 	 
 � � � � � � � � � � � � � � 
 � � � � �


 � � � � � 
 � � � � � � � �

� � � � � � � � � � � � � � � � � � 
 � � � � � � � � � � � � 
 � � � � � � � � � �

� � � � � 
 � � � �� � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � 	 
 � � � � �

� � � � � � � � � � � � � 
 � � � � � � � � � � � � � � � �

� � � �� � � � � � 	 
 � � � � � � � � � � � 
 � � � �

CIS 500, 26 November 13



Success

This works, in the sense that we can now instantiate � � � � � � 	 
 � � � � � � � � �

(without diverging!), and its instances behave in the way we intended.

CIS 500, 26 November 14



Success (?)

This works, in the sense that we can now instantiate � � � � � � 	 
 � � � � � � � � �

(without diverging!), and its instances behave in the way we intended.

However, all the “delaying” we added has an unfortunate side effect:

instead of computing the “method table” just once, when an object is

created, we will now re-compute it every time we invoke a method!

Section 18.12 in TAPL shows how this can be repaired by using references

instead of � � � to “tie the knot” in the method table.

CIS 500, 26 November 14-a



Recap

CIS 500, 26 November 15



Multiple representations

All the objects we have built in this series of examples have type � 	 
 � � � � .

But their internal representations vary widely.

CIS 500, 26 November 16



Encapsulation

An object is a record of functions, which maintain common internal state

via a shared reference to a record of mutable instance variables.

This state is inaccessible outside of the object because there is no way to

name it. (Instance variables can only be named from inside the methods.)

CIS 500, 26 November 17



Subtyping

Subtyping between object types is just ordinary subtyping between types

of records of functions.

Functions like � � � � that expect � 	 
 � � � � objects as parameters can
(safely) be called with objects belonging to any subtype of � 	 
 � � � � .

CIS 500, 26 November 18



Inheritance

Classes are data structures that can be both extended and instantiated.

We modeled inheritance by copying implementations of methods from

superclasses to subclasses.

Each class

� waits to be told a record � of instance variables and an object � � � �

(which should have the same interface and be based on the same

record of instance variables)

� uses � and � � � � to instantiate its superclass

� constructs a record of method implementations, copying some directly

from � 
 � � � and implementing others in terms of � � � � and � 
 � � � .

The � � � � parameter is “resolved” at object creation time using � � � .

CIS 500, 26 November 19



Additional exercise

Take all the examples from this lecture (and the previous one), and

recode them in Java.

[Not to be handed in — just for you to check your understanding.]

CIS 500, 26 November 20


