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Inductive definitions

1. (20 points) Suppose we define a set of expressions called widgets as follows. (We’ll use the metavari-
ables X, Y, A, B, and C to range over widgets.)

X ::= X ⊗ X
X 2 X
?

We can express the syntax of widgets equivalently in OCaml, as follows:

type widget = Cross of widget * widget
| Box of widget * widget
| Star

The following OCaml function computes a relation on widgets, written X Ç Y in mathematical notation
and lolli widX widY in ascii. (Note: don’t waste time figuring out what the Ç relation “means”: it was
invented just for the exam and is not intended to correspond to anything computationally natural.)

let rec lolli widX widY =
widX = widY ||
match (widX, widY) with

(Cross(widA, widB), Cross(widC, widD)) →
(lolli widA widC) || (lolli widB widD)

| (Box(widA, Star), Star) →
lolli widA Star

| (Box(widA, Cross(widB, widC)), _) →
lolli (Cross(widA, widY)) (Box(widC, widB))

| (_, Box(widB, widC)) →
(lolli widB Star) && (lolli widC widX)

| (_,_) →
false

Recall that the OCaml operator && is “boolean and” and || is “or.”

Give a set of inference rules for the Ç relation corresponding to the given OCaml implementation—i.e.,
such that X Ç Y iff evaluating lolli widX widY in OCaml yields true (where widX is an OCaml value
of type widget representing the mathematical widget X and similarly widY represents Y). One of the
required rules is given as an example; you write the rest.

A Ç ?
A 2? Ç ?

Answer:

A Ç A

A Ç C

A ⊗ B Ç C ⊗ D

B Ç D

A ⊗ B Ç C ⊗ D

A ⊗ Y Ç C 2 B

A 2 (B ⊗ C) Ç Y

B Ç ? C Ç X

X Ç B 2 C

Grading scheme:
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• 0 points for omitted rule

• 4 points for each rule with the following deductions:

– -2 for each upside-down rule

– -2 for wild card or blank where meta variable should be

– -1 for incorrect variable other than wild card

• No deductions were made for the following

– full credit (8/8) for folding to "or" rules together into 1 rule with an "or" separating the premises

– attempting a rule for the last case in the OCaml match

– No deduction for minor, but clear, notational deviations, including a different arrow character
or a blank, or ordered pair notation instead of lollipop arrow

– no deduction for omitting parens from 4th rule in key (a surprisingly rare error!)
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Untyped lambda-calculus

2. Recall that the Church encoding of the natural numbers in untyped lambda-calculus represents a
number n as a function that applies a given “successor operation” n times to a given “starting value.”

Church numerals:

0 = λs. λz. z
1 = λs. λz. (s z)
2 = λs. λz. s (s z)
3 = λs. λz. s (s (s z))

In this problem, we explore a different encoding of natural numbers based on their binary representa-
tion. Example encodings in this new system are:

Binary numerals:

0 = λone. λzero. λt. zero t
1 = λone. λzero. λt. one t
2 = λone. λzero. λt. one (zero t)
3 = λone. λzero. λt. one (one t)
4 = λone. λzero. λt. one (zero (zero t))
5 = λone. λzero. λt. one (zero (one t))

As in the standard Church encoding, numbers are represented as functions that can be used to “count.”
However, rather then applying a single given function n times to a starting value, the binary encoding is
supplied with two functions plus a starting value. It applies its one argument to the starting value if the
lowest-order bit of the binary representation of n is 1; otherwise (if the lowest order bit is 0) it applies
its zero argument. To the result, it applies one if the next lowest bit in the binary representation of n
is 1, otherwise zero; and so on up to the highest-order bit.

Note that, leading zeros are considered insignificant in this encoding—i.e., both

fn one. fn zero. fn t. zero (one t)

and

fn one. fn zero. fn t. one t

are valid encodings of the number 1. (This implies that the function passed for the zero argument
should “have no effect” if it is the last one to be applied.)

(a) (7 points) Write a function that multiplies a number in the binary encoding by 2. (Hint: in base 2,
a multiplication by 2 is just a one-bit shift.)

Answer: λn. λone. λzero. λt. n one zero (zero t)

Grading scheme:

• 2 points for correct args./shape of the function

• 3 points for using the term (zero t) in roughly the correct way

• 2 points for having everything else right

(b) (7 points) Recall that we can encode Boolean values in the untyped lambda calculus as follows:

tru = λt. λf. t
fls = λt. λf. f
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Write a function that returns tru when given the binary encoding of 0 and fls if given the
encoding of any non-zero number.

Answer: λn. n (λx. fls) (λy. y) tru

Grading scheme:

• 2 points for correct args./shape of the function

• 1 point for replacing ’one’ by something like "λx. fls"

• 1 point for replacing ’zero’ by something like "λx. x"

• 1 point for replacing ’t’ by something like "tru"

• 2 points for everything else right extra points for being close
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Simply typed lambda-calculus

The definition of the simply typed lambda-calculus is reproduced on pages 15 to 17.

3. (4 points)

For each of the following types, write a closed lambda-term that has that type and that contains at
least one application. For example, for the type (Nat→Nat)→Nat, the following is a correct answer:

λf:Nat→Nat. f 1

On the other hand,

λf:Nat→Nat. 1

is not an acceptable answer (even though it has the correct type) because it does not contain an
application.

(a) ((Nat→Unit)→Nat) → Nat

Answer: λf:(Nat→Unit)→Nat. f (λx:Nat. unit)

(b) (Unit→Nat) → ((Unit→Nat)→Nat) → Nat

Answer: λf:Unit→Nat. λg:(Unit→Nat)→Nat. g f

Grading scheme: Two points for each part.
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Subtyping

4. (20 points) In this question, you will be asked to fill in a proof of the preservation theorem for the
simply typed lambda calculus with records and subtyping. The theorem is identical to the one in
Chapter 15 of TAPL, but for the sake of variety we’ll do proof by induction on evaluation derivations
(in TAPL it went by induction on typing derivations).

The following two lemmas will be used in the proof. (Note that the first four cases of the first lemma
list inversion properties of the typing relation, while the last case concerns the subtype relation.)

Lemma [Inversion]:

(a) If Γ ` {ki=si i∈1..m} : T, then there are types T1 to Tm such that Γ ` si : Ti for each i and such
that {ki:Ti i∈1..m} <: T.

(b) If Γ ` t.l : T, then Γ ` t : {l:T}.

(c) If Γ ` t1 t2 : T then Γ ` t1 : T′→T and Γ ` t2 : T′.

(d) If Γ ` λx:S1.s2 : T1→T2, then T1 <: S1 and Γ , x:S1 ` s2 : T2.

(e) If S <: {lj:Tj i∈1..m}, then S = {ki:Si i∈1..n}, where {lj i∈1..m} ⊆ {ki i∈1..n} and Si <: Tj for each
common label ki = lj .

Lemma [Substitution]: If Γ , x:S ` t : T and Γ ` s : S, then Γ ` [x, s]t : T.

For each case in the proof on the next page, write down the skeleton of the argument. A skeleton
contains the same sequence of steps as the full argument, but omits all details. The rules for writing
skeletons are as follows:

• Steps of the form “By part (x) of the inversion lemma, we obtain...” in the full argument become
“inversion(x)” in the skeleton.

• Steps of the form “By the substitution lemma, we obtain...” become “substitution.”

• Steps of the form “By the induction hypothesis, we obtain...” become “IH.”

• Steps of the form “By typing rule T-XXX, we obtain...” become “T-XXX.”

• If the full argument doesn’t use any of the lemmas or the induction hypothesis, then its skeleton
is “Direct.”

For example, if the full argument is

Case E-App1: t = t1 t2 t′ = t′1 t2 t1 -→ t′1
By part (c) of the inversion lemma, we obtain Γ ` t1 : T′→T and Γ ` t2 : T′. By the induction
hypothesis, we obtain Γ ` t′1 : T′→T. The required result (Γ ` t′1 t2 : T) now follows by
T-App.

the skeleton is written:

Case E-App1: t = t1 t2 t′ = t′1 t2 t1 -→ t′1
Inversion(c), IH, T-App.
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Theorem [Preservation]: If t -→ t′ and Γ ` t : T, then Γ ` t′ : T.

Proof: By induction on evaluation derivations, with a case analysis on the final rule used.

Case E-App1: t = t1 t2 t′ = t′1 t2 t1 -→ t′1
Inversion(c), IH, T-App.

Case E-App2: t = v1 t2 t′ = v1 t
′
2 t2 -→ t′2

Answer: Inversion(c), IH, T-App.

Case E-AppAbs: t = (λx:T11.t12) v2 t′ = [x, v2]t12

Answer: Inversion(c), inversion(d), T-Sub, substitution.

Case E-Rcd: t = {li=vi i∈1..j−1,lj=tj,lk=tk k∈j+1..n}
t′ = {li=vi i∈1..j−1,lj=t′j,lk=tk k∈j+1..n}
tj -→ t′j

Answer: Inversion(a), IH, T-Rcd, T-Sub.

Case E-Proj: t = t1.l t′ = t′1.l t1 -→ t′1
Answer: Inversion(b), IH, T-Proj.

Case E-ProjRcd: t = {li=vi i∈1..n}.lj t′ = vj

Answer: Inversion(b), inversion(a), inversion(e), T-Sub.

Grading scheme: 4 points per case. -2 for missing or extra IH. -1 for missing rule. -1 for extraneous rule.
Exceptions: instead of counting off 2 points for a wrong but similar rule (i.e. the right rule is missing and
the wrong rule extraneous) only deducted 1 point. Also, only 1 point deducted for rules in transposed
order.
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5. (3 points) Suppose we changed part (a) of the inversion lemma in problem 4 to match the one given
in chapter 15 of TAPL:

If Γ ` {ka=sa a∈1..m} : {li:Ti i∈1..n}, then {li i∈1..n} ⊆ {ka a∈1..m} and Γ ` sa : Ti for each
common label ka = li .

Which step would fail in the above proof of preservation? Briefly explain why.

Answer: The E-Rcd case would fail, for several reasons: First of all, the new case (a) of the inversion
lemma would not apply at all, because the assumption on t is just that it has some type T, not that T
has the form of a record type. Even assuming that we could apply the new inversion lemma, we would
not get much further since, in order to apply the IH and reconstruct the original type for t′, we need
to have typing derivations for all fields of the record; but this variant of the rule doesn’t provide typing
derivations for fields that do not appear in {li:Ti i∈1..n}.

The other cases all still work (including in particular E-ProjRcd).

Grading scheme: 1 point for mentioning E-Rcd; 0 points if E-Rcd not mentioned. -1 for mentioning
cases besides E-Rcd. One additional point for an incomplete but not wrong explanation. Full credit for
explaining any of the difficulties listed in the sample answer above. (Strictly speaking, only the first
difficulty is correct: the new inversion lemma simply cannot be applied. But we still gave full credit to
answers that focused on the other difficulties.)

6. (3 points) Another natural-looking variant of part (a) of the inversion lemma is this:

If Γ ` {ki=si i∈1..n} : T, then T = {ki:Ti i∈1..n} and Γ ` si : Ti for each i ∈ 1..n.

Sadly, however, this variant is false.

Briefly explain why.

Answer: Because it claims that any type for a record expression will have the same fields as the record
(in the same order); but the subsumption rule allows us to “forget” fields in the type that the expression
actually mentions and to permute the order and raise the types of the remaining fields.

Grading scheme: This question was a bit hard to answer because the clear-cut part (the fact that the
lemma is problematic because of being false) was already given. Full credit was awarded for any answer
that suggested that the possibility of subsumption was not taken into account, or that gave a correct
counter-example. 2 points for “sort of correct” but garbled answers. 1 point for very brief or garbled
answers that mention the word “subtyping.” No points for explaining that the proof of preservation
doesn’t go through (it does go through, if we assume the lemma is true).
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Subtyping

7. Suppose we add new types A, B, C, D, and E to the simply typed lambda-calculus with subtyping, along
with the following subtyping rules:

A <: B

B <: C

D <: E

A <: E

(a) (6 points) For each type S from the left-hand column and type T from the right-hand column such
that S <: T, draw a line connecting S to T.

Choices for S:

S1 = {x:D}→{y:A}

S2 = {y:B}

S3 = {x:A,y:A}

S4 = D

S5 = {x:B}

Choices for T:

T1 = E

T2 = {x:D}

T3 = {x:E}→{y:B}

T4 = {}

T5 = {y:E}

Answer:

• S1 not a subtype of any Ti

• S2 <: T4

• S3 <: T4, T5

• S4 <: T1

• S5 <: T4

Grading scheme: One point off for each missing line; one point off for each incorrect line.

continued...
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(b) (6 points) Recall the definitions of joins and meets in the subtype relation:

• A type J is called a join of a pair of types S and T if S <: J, T <: J, and, for all types U, if
S <: U and T <: U, then J <: U.

• A type M is a meet of S and T if M <: S, M <: T, and, for all types L, if L <: S and L <: T, then
L <: M.

Give the join and meet of each pair of types, where they exist (otherwise write “undefined.”)

i. {x:E, y:C} and {x:B, y:B}

join = {x:Top,y:C} meet = {x:A,y:B}

ii. {x:B} and {y:B}

join = {} meet = {x:B, y:B}

iii. {x:A} and {x:D}

join = {x:E} meet = undefined

Grading scheme: 1 point for each exactly correct answer. No partial credit.

(c) (3 points) How does the join of {x:A} and {x:D} change if we add the rule D <: B to the subtyping
judgment?

Answer: It ceases to exist: in the enriched system, the common upper bounds of {x:A} and {x:D}
are {x:B}, {x:C}, and {x:E}; but none of these is a subtype of all the others.
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Grading scheme:

• full credit for “becomes undefined”

• no points for giving a join

• 1 point for saying something like “there are 2 possible joins”

• 1/2 points deducted for saying “undefined” plus something incorrect

• full credit for “unchanged” on papers where 7Biii was (incorrectly) marked as undefined

• 1 point for {} with a semi-reasonable explanation
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Imperative object encodings

This problem involves an encoding of simple objects in the simply typed lambda-calculus with sub-
typing, records, references, and fixed points. This calculus is defined for your reference on pages 15
to 21.

8. (20 points) Consider the five following class definitions, in the style of TAPL Chapter 18:

R = {};
O = {m:Unit→Unit, n:Unit→Unit, o:Unit→Unit};

classA = λr:R. λself: Unit→O. λ_:Unit.
{m = λ_:Unit. (self unit).n unit,
n = λ_:Unit. (self unit).m unit,
o = λ_:Unit. unit };

classB = λr:R. λself: Unit→O. λ_:Unit.
let super = classA r self unit in
{m = λ_:Unit. unit,
n = super.n,
o = super.o };

classC = λr:R. λself: Unit→O. λ_:Unit.
let super = classA r self unit in
{m = super.m,
n = λ_:Unit. super.n unit,
o = super.o };

classD = λr:R. λself: Unit→O. λ_:Unit.
let super = classA r self unit in
{m = super.m,
n = λ_:Unit. super.o unit,
o = super.o };

classE = λr:R. λself: Unit→O. λ_:Unit.
let super = classA r self unit in
{m = (self unit).m,
n = super.n,
o = super.o };

Each of these classes produces objects with the same type, O, which offers three methods. Their state
representations are all the trivial record type, R. The methods m, n, and o all take Unit arguments and
return Unit results—that is, the only interesting thing about them is whether they diverge or converge.
The class classA is the “root class” from which the other four are derived.

continued...
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Given these definitions, does evaluation of the following expressions converge (yielding unit) or di-
verge? For each one, circle the word “converges” or “diverges,” as appropriate. Answers boxed below.

((fix (classA {})) unit).n unit converges diverges

((fix (classA {})) unit).o unit converges diverges

((fix (classB {})) unit).n unit converges diverges

((fix (classB {})) unit).o unit converges diverges

((fix (classC {})) unit).n unit converges diverges

((fix (classC {})) unit).o unit converges diverges

((fix (classD {})) unit).n unit converges diverges

((fix (classD {})) unit).o unit converges diverges

((fix (classE {})) unit).n unit converges diverges

((fix (classE {})) unit).o unit converges diverges



14 WPE id / last name:

Featherweight Java

The definition of Featherweight Java is reproduced on pages 22 to 24.

9. (a) (16 points)

Chapter 3 of TAPL introduced an alternative big-step style for presenting evaluation relations, in
which each rule shows how to evaluate a term of a particular form “all the way” to a final value,
rather than just showing how to make it take a single step. For example, in the lambda-calculus
with booleans, the usual small step evaluation rules for if...

if true then t2 else t3 -→ t2

if false then t2 else t3 -→ t3

t1 -→ t′1
if t1 then t2 else t3 -→ if t′1 then t2 else t3

correspond to the following big-step rules:

t1 ⇓ true t2 ⇓ v2

if t1 then t2 else t3 ⇓ v2

t1 ⇓ false t3 ⇓ v3

if t1 then t2 else t3 ⇓ v3

Write down a big step evaluation relation for Featherweight Java. (You’ll need four inference
rules.)

Answer:
t0 ⇓ new C(v) C <: D

(D)t0 ⇓ new C(v)

t0 ⇓ new C(v) fields(C) = C f

t0.fi -→ vi

t0 ⇓ new C(v) mbody(m,C) = (x,s) t ⇓ u [x, u, this , new C(v)]s ⇓ v

t0.m(t) -→ v

t ⇓ v

new C(t) ⇓ new C(v)

Grading scheme:

• 4 points per rule.

• For all rules:

– -2 points for using a value instead of a term on the LHS.

– -4 points for a loop in the operational semantics.

– +/- points for being very close or very wrong.

• Individual rules: Cast:

– -1 for no subtyping constraint.

– -2 for no class mentioned in the new expression.

– -1 for evaluating to wrong type.

• Prj.:

– -2 for no class mentioned in the record evaluation.
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– -1 for no constraint that project field exists

– -3 for not projecting from the record

• Meth:

– -2 for no substitution at all

– -3 for substitution in the conclusion

(b) (5 points) State the preservation theorem for the big-step variant of FJ.

Answer: If Γ ` t : C and t ⇓ v, then Γ ` v : D for some D <: C.

Grading scheme:

• No deduction for omitting Γ
• Either v or new C(v) accepted for the value

• -2 for omitting t ⇓ v

• -3 for neglecting the fact that the new type can be a subtype of old type

• hand-wavy english, correct but too vague = 1/5

• weird stuff that looks a tiny bit right = 1/5



For reference: Simply typed lambda calculus with records (and Nat, Bool, and Unit)

Syntax

t ::= terms
unit constant unit
{li=ti i∈1..n} record
t.l projection
x variable
λx:T.t abstraction
t t application
true constant true
false constant false
if t then t else t conditional
0 constant zero
succ t successor
pred t predecessor
iszero t zero test

v ::= values
unit constant unit
{li=vi i∈1..n} record value
λx:T.t abstraction value
true true value
false false value
nv numeric value

T ::= types
Unit unit type
{li:Ti i∈1..n} type of records
Bool type of booleans
Nat type of natural numbers
T→T type of functions

Γ ::= contexts
∅ empty context
Γ , x:T term variable binding

nv ::= numeric values
0 zero value
succ nv successor value

16



Evaluation t -→ t′

{li=vi i∈1..n}.lj -→ vj (E-ProjRcd)

t1 -→ t′1
t1.l -→ t′1.l

(E-Proj)

tj -→ t′j
{li=vi i∈1..j−1,lj=tj,lk=tk k∈j+1..n}
-→ {li=vi i∈1..j−1,lj=t

′
j,lk=tk

k∈j+1..n}

(E-Rcd)

t1 -→ t′1
t1 t2 -→ t′1 t2

(E-App1)

t2 -→ t′2
v1 t2 -→ v1 t′2

(E-App2)

(λx:T11.t12) v2 -→ [x, v2]t12 (E-AppAbs)

if true then t2 else t3 -→ t2 (E-IfTrue)

if false then t2 else t3 -→ t3 (E-IfFalse)

t1 -→ t′1
if t1 then t2 else t3 -→ if t′1 then t2 else t3

(E-If)

t1 -→ t′1
succ t1 -→ succ t′1

(E-Succ)

pred 0 -→ 0 (E-PredZero)

pred (succ nv1) -→ nv1 (E-PredSucc)

t1 -→ t′1
pred t1 -→ pred t′1

(E-Pred)

iszero 0 -→ true (E-IszeroZero)

iszero (succ nv1) -→ false (E-IszeroSucc)

t1 -→ t′1
iszero t1 -→ iszero t′1

(E-IsZero)

Typing Γ ` t : T

Γ ` unit : Unit (T-Unit)

for each i Γ ` ti : Ti

Γ ` {li=ti i∈1..n} : {li:Ti i∈1..n}
(T-Rcd)

Γ ` t1 : {li:Ti i∈1..n}

Γ ` t1.lj : Tj
(T-Proj)

Γ `true : Bool (T-True)

Γ `false : Bool (T-False)

Γ `t1 : Bool Γ `t2 : T Γ `t3 : T

Γ `if t1 then t2 else t3 : T
(T-If)

Γ `0 : Nat (T-Zero)

17



Γ `t1 : Nat

Γ `succ t1 : Nat
(T-Succ)

Γ `t1 : Nat

Γ `pred t1 : Nat
(T-Pred)

Γ `t1 : Nat

Γ `iszero t1 : Bool
(T-IsZero)

x:T ∈ Γ
Γ ` x : T

(T-Var)

Γ , x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2
(T-Abs)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

18



For reference: Subtyping

New syntactic forms

T ::= ... types
Top maximum type

New subtyping rules S <: T

S <: S (S-Refl)

S <: U U <: T

S <: T
(S-Trans)

S <: Top (S-Top)

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2
(S-Arrow)

{li:Ti i∈1..n+k} <: {li:Ti i∈1..n} (S-RcdWidth)

for each i Si <: Ti

{li:Si i∈1..n} <: {li:Ti i∈1..n}
(S-RcdDepth)

{kj:Sj j∈1..n} is a permutation of {li:Ti i∈1..n}

{kj:Sj j∈1..n} <: {li:Ti i∈1..n}
(S-RcdPerm)

New typing rules Γ ` t : T

Γ ` t : S S <: T

Γ ` t : T
(T-Sub)

19



For reference: References, Fix, and let

New syntactic forms

t ::= ... terms

ref t reference creation
!t dereference
t:=t assignment
l store location
let x=t in t let binding
fix t fixed point of t

v ::= ... values

l store location

T ::= ... types

Ref T type of reference cells

µ ::= ... stores

∅ empty store
µ, l = v location binding

Σ ::= ... store typings

∅ empty store typing
Σ, l:T location typing

New evaluation rules t | µ -→ t′ | µ′

t1| µ -→ t′1| µ′
t1 t2| µ -→ t′1 t2| µ′

(E-App1)

t2| µ -→ t′2| µ′
v1 t2| µ -→ v1 t′2| µ′

(E-App2)

(λx:T11.t12) v2| µ -→ [x, v2]t12| µ (E-AppAbs)

{li=vi i∈1..n}.lj| µ -→ vj | µ (E-ProjRcd)

t1| µ -→ t′1| µ′
t1.l| µ -→ t′1.l| µ′

(E-Proj)

tj | µ -→ t′j | µ′
{li=vi i∈1..j−1,lj=tj,lk=tk k∈j+1..n}| µ
-→ {li=vi i∈1..j−1,lj=t

′
j,lk=tk

k∈j+1..n}| µ′
(E-Rcd)

l ∉ dom(µ)
ref v1 | µ -→ l | (µ, l , v1)

(E-RefV)

t1 | µ -→ t′1 | µ′
ref t1 | µ -→ ref t′1 | µ′

(E-Ref)

µ(l) = v

!l | µ -→ v | µ (E-DerefLoc)

20



t1 | µ -→ t′1 | µ′
!t1 | µ -→ !t′1 | µ′

(E-Deref)

l:=v2 | µ -→ unit | [l , v2]µ (E-Assign)

t1 | µ -→ t′1 | µ′
t1:=t2 | µ -→ t′1:=t2 | µ′

(E-Assign1)

t2 | µ -→ t′2 | µ′
v1:=t2 | µ -→ v1:=t′2 | µ′

(E-Assign2)

if true then t2 else t3| µ -→ t2| µ (E-IfTrue)

if false then t2 else t3| µ -→ t3| µ (E-IfFalse)

t1| µ -→ t′1| µ′
if t1 then t2 else t3| µ -→ if t′1 then t2 else t3| µ′

(E-If)

t1| µ -→ t′1| µ′
succ t1| µ -→ succ t′1| µ′

(E-Succ)

pred 0| µ -→ 0| µ (E-PredZero)

pred (succ nv1)| µ -→ nv1| µ (E-PredSucc)

t1| µ -→ t′1| µ′
pred t1| µ -→ pred t′1| µ

(E-Pred)

iszero 0| µ -→ true| µ (E-IszeroZero)

iszero (succ nv1)| µ -→ false| µ (E-IszeroSucc)

t1| µ -→ t′1| µ′
iszero t1| µ -→ iszero t′1| µ′

(E-IsZero)

let x=v1 in t2| µ -→ [x, v1]t2| µ (E-LetV)

t1| µ -→ t′1| µ′
let x=t1 in t2| µ -→ let x=t′1 in t2| µ′

(E-Let)

fix (λx:T1.t2)| µ
-→ [x, (fix (λx:T1.t2))]t2| µ (E-FixBeta)

t1| µ -→ t′1| µ′
fix t1| µ -→ fix t′1| µ

(E-Fix)

New subtyping rules S <: T

S1 <: T1 T1 <: S1

Ref S1 <: Ref T1
(S-Ref)

New typing rules Γ | Σ ` t : T

x:T ∈ Γ
Γ | Σ ` x : T

(T-Var)

Γ , x:T1| Σ ` t2 : T2

Γ | Σ ` λx:T1.t2 : T1→T2
(T-Abs)
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Γ | Σ ` t1 : T11→T12 Γ | Σ ` t2 : T11

Γ | Σ ` t1 t2 : T12
(T-App)

Γ | Σ ` unit : Unit (T-Unit)

Σ(l) = T1

Γ | Σ ` l : Ref T1
(T-Loc)

Γ | Σ ` t1 : T1

Γ | Σ ` ref t1 : Ref T1
(T-Ref)

Γ | Σ ` t1 : Ref T11

Γ | Σ ` !t1 : T11
(T-Deref)

Γ | Σ ` t1 : Ref T11 Γ | Σ ` t2 : T11

Γ | Σ ` t1:=t2 : Unit
(T-Assign)

Γ ` t1 : T1 Γ , x:T1 ` t2 : T2

Γ ` let x=t1 in t2 : T2
(T-Let)

Γ ` t1 : T1→T1

Γ ` fix t1 : T1
(T-Fix)
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For reference: FJ

Syntax

CL ::= class declarations
class C extends C {C f; K M}

K ::= constructor declarations
C(C f) {super(f); this.f=f;}

M ::= method declarations
C m(C x) {return t;}

t ::= terms
x variable
t.f field access
t.m(t) method invocation
new C(t) object creation
(C) t cast

v ::= values
new C(v) object creation

Subtyping C<:D

C <: C

C <: D D <: E

C <: E

CT(C) = class C extends D {...}

C <: D

Field lookup fields(C) = C f

fields(Object) = •
CT(C) = class C extends D {C f; K M}

fields(D) = D g

fields(C) = D g, C f

Method type lookup mtype(m,C) = C→C
CT(C) = class C extends D {C f; K M}

B m (B x) {return t;} ∈ M

mtype(m,C) = B→B
CT(C) = class C extends D {C f; K M}

m is not defined in M

mtype(m,C) = mtype(m,D)

Method body lookup mbody(m,C) = (x,t)
CT(C) = class C extends D {C f; K M}

B m (B x) {return t;} ∈ M

mbody(m,C) = (x,t)
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CT(C) = class C extends D {C f; K M}
m is not defined in M

mbody(m,C) = mbody(m,D)

Valid method overriding override(m, D, C→C0)

mtype(m,D) = D→D0 implies C = D and C0 = D0

override(m, D, C→C0)

Evaluation t -→ t′

fields(C) = C f

(new C(v)).fi -→ vi
(E-ProjNew)

mbody(m,C) = (x,t0)
(new C(v)).m(u) -→ [x, u, this, new C(v)]t0

(E-InvkNew)

C <: D

(D)(new C(v)) -→ new C(v)
(E-CastNew)

t0 -→ t′0
t0.f -→ t′0.f

(E-Field)

t0 -→ t′0
t0.m(t) -→ t′0.m(t)

(E-Invk-Recv)

ti -→ t′i
v0.m(v, ti, t)
-→ v0.m(v, t

′
i, t)

(E-Invk-Arg)

ti -→ t′i
new C(v, ti, t)
-→ new C(v, t′i, t)

(E-New-Arg)

t0 -→ t′0
(C)t0 -→ (C)t′0

(E-Cast)

Term typing Γ ` t : C

x:C ∈ Γ
Γ ` x : C

(T-Var)

Γ ` t0 : C0 fields(C0) = C f

Γ ` t0.fi : Ci
(T-Field)

Γ ` t0 : C0

mtype(m,C0) = D→C
Γ ` t : C C <: D

Γ ` t0.m(t) : C
(T-Invk)

fields(C) = D f
Γ ` t : C C <: D

Γ ` new C(t) : C
(T-New)

Γ ` t0 : D D <: C

Γ ` (C)t0 : C
(T-UCast)
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Γ ` t0 : D C <: D C ≠ D

Γ ` (C)t0 : C
(T-DCast)

Γ ` t0 : D C 6<: D D 6<: C
stupid warning

Γ ` (C)t0 : C
(T-SCast)

Method typing M OK in C

x : C, this : C ` t0 : E0 E0 <: C0

CT(C) = class C extends D {...}
override(m, D, C→C0)

C0 m (C x) {return t0;} OK in C

Class typing C OK

K = C(D g, C f) {super(g); this.f = f;}
fields(D) = D g M OK in C

class C extends D {C f; K M} OK
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