
CIS 500 — Software Foundations

Final Exam (and WPE­I exam)

November 13, 2002

If you are taking this exam for WPE­I credit...

WPE ID number:

Otherwise...

Name:

Email

Score

1

2

3

4

5

6

7

8

9

Total

Instructions

• This is a closed­book exam: you may not make use of any books or notes.

• You have 120 minutes to answer all of the questions. The entire exam is worth 120 points.

• Questions vary significantly in difficulty, and the point value of a given question is not always exactly

proportional to its difficulty. Do not spend too much time on any one question.

• Partial credit will be given. All correct answers are short. The back side of each page may be used as a

scratch pad.

• Some of the problems are split across two pages, with the first page providing definitions or explana­

tions that may be needed in answering the questions on the second page. You may find it helpful to

tear the first page of these problems out of the exam so that you can use it for reference.

If you do this, please be careful to tear the page rather than pulling it out (thus destroying the staple,

which will cause your exam to come loose in a box with 80 others...).

• Good luck!!

2 WPE id / last name:Inductive definitions

1. (20 points) Suppose we define a set of expressions called widgets as follows. (We’ll use the metavari­

ables X, Y, A, B, and C to range over widgets.)

X ::= X ⊗ X

X 2 X

?

We can express the syntax of widgets equivalently in OCaml, as follows:

type widget = Cross of widget * widget

| Box of widget * widget

| Star

The following OCaml function computes a relation on widgets, written X Ç Y in mathematical notation

and lolli widX widY in ascii. (Note: don’t waste time figuring out what the Ç relation “means”: it was

invented just for the exam and is not intended to correspond to anything computationally natural.)

let rec lolli widX widY =

widX = widY ||

match (widX, widY) with

(Cross(widA, widB), Cross(widC, widD)) →

(lolli widA widC) || (lolli widB widD)

| (Box(widA, Star), Star) →

lolli widA Star

| (Box(widA, Cross(widB, widC)), _) →

lolli (Cross(widA, widY)) (Box(widC, widB))

| (_, Box(widB, widC)) →

(lolli widB Star) && (lolli widC widX)

| (_,_) →

false

Recall that the OCaml operator && is “boolean and” and || is “or.”

continued...

WPE id / last name: 3Give a set of inference rules for the Ç relation corresponding to the given OCaml implementation—i.e.,

such that X Ç Y iff evaluating lolli widX widY in OCaml yields true (where widX is an OCaml value

of type widget representing the mathematical widget X and similarly widY represents Y). One of the

required rules is given as an example; you write the rest.

A Ç ?

A 2? Ç ?

Grading scheme:

• 0 points for omitted rule

• 4 points for each rule with the following deductions:

– ­2 for each upside­down rule

– ­2 for wild card or blank where meta variable should be

– ­1 for incorrect variable other than wild card

• No deductions were made for the following

– full credit (8/8) for folding to "or" rules together into 1 rule with an "or" separating the premises

– attempting a rule for the last case in the OCaml match

– No deduction for minor, but clear, notational deviations, including a different arrow character

or a blank, or ordered pair notation instead of lollipop arrow

– no deduction for omitting parens from 4th rule in key (a surprisingly rare error!)

4 WPE id / last name:Untyped lambda­calculus

2. Recall that the Church encoding of the natural numbers in untyped lambda­calculus represents a

number n as a function that applies a given “successor operation” n times to a given “starting value.”

Church numerals:

0 = λs. λz. z

1 = λs. λz. (s z)

2 = λs. λz. s (s z)

3 = λs. λz. s (s (s z))

In this problem, we explore a different encoding of natural numbers based on their binary representa­

tion. Example encodings in this new system are:

Binary numerals:

0 = λone. λzero. λt. zero t

1 = λone. λzero. λt. one t

2 = λone. λzero. λt. one (zero t)

3 = λone. λzero. λt. one (one t)

4 = λone. λzero. λt. one (zero (zero t))

5 = λone. λzero. λt. one (zero (one t))

As in the standard Church encoding, numbers are represented as functions that can be used to “count.”

However, rather then applying a single given function n times to a starting value, the binary encoding is

supplied with two functions plus a starting value. It applies its one argument to the starting value if the

lowest­order bit of the binary representation of n is 1; otherwise (if the lowest order bit is 0) it applies

its zero argument. To the result, it applies one if the next lowest bit in the binary representation of n

is 1, otherwise zero; and so on up to the highest­order bit.

Note that, leading zeros are considered insignificant in this encoding—i.e., both

fn one. fn zero. fn t. zero (one t)

and

fn one. fn zero. fn t. one t

are valid encodings of the number 1. (This implies that the function passed for the zero argument

should “have no effect” if it is the last one to be applied.)

continued...

WPE id / last name: 5(a) (7 points) Write a function that multiplies a number in the binary encoding by 2. (Hint: in base 2,

a multiplication by 2 is just a one­bit shift.)

Grading scheme:

• 2 points for correct args./shape of the function

• 3 points for using the term (zero t) in roughly the correct way

• 2 points for having everything else right

(b) (7 points) Recall that we can encode Boolean values in the untyped lambda calculus as follows:

tru = λt. λf. t

fls = λt. λf. f

Write a function that returns tru when given the binary encoding of 0 and fls if given the

encoding of any non­zero number.

Grading scheme:

• 2 points for correct args./shape of the function

• 1 point for replacing ’one’ by something like "λx. fls"

• 1 point for replacing ’zero’ by something like "λx. x"

• 1 point for replacing ’t’ by something like "tru"

• 2 points for everything else right extra points for being close

6 WPE id / last name:Simply typed lambda­calculus

The definition of the simply typed lambda­calculus is reproduced on pages 18 to 20.

3. (4 points)

For each of the following types, write a closed lambda­term that has that type and that contains at

least one application. For example, for the type (Nat→Nat)→Nat, the following is a correct answer:

λf:Nat→Nat. f 1

On the other hand,

λf:Nat→Nat. 1

is not an acceptable answer (even though it has the correct type) because it does not contain an

application.

(a) ((Nat→Unit)→Nat) → Nat

(b) (Unit→Nat) → ((Unit→Nat)→Nat) → Nat

Grading scheme: Two points for each part.

WPE id / last name: 7Subtyping

4. (20 points) In this question, you will be asked to fill in a proof of the preservation theorem for the

simply typed lambda calculus with records and subtyping. The theorem is identical to the one in

Chapter 15 of TAPL, but for the sake of variety we’ll do proof by induction on evaluation derivations

(in TAPL it went by induction on typing derivations).

The following two lemmas will be used in the proof. (Note that the first four cases of the first lemma

list inversion properties of the typing relation, while the last case concerns the subtype relation.)

Lemma [Inversion]:

(a) If Γ ` {ki=si
i∈1..m} : T, then there are types T1 to Tm such that Γ ` si : Ti for each i and such

that {ki:Ti
i∈1..m} <: T.

(b) If Γ ` t.l : T, then Γ ` t : {l:T}.

(c) If Γ ` t1 t2 : T then Γ ` t1 : T′→T and Γ ` t2 : T′.

(d) If Γ ` λx:S1.s2 : T1→T2, then T1 <: S1 and Γ , x:S1 ` s2 : T2.

(e) If S <: {lj:Tj
i∈1..m}, then S = {ki:Si

i∈1..n}, where {lj
i∈1..m} ⊆ {ki

i∈1..n} and Si <: Tj for each

common label ki = lj .

Lemma [Substitution]: If Γ , x:S ` t : T and Γ ` s : S, then Γ ` [x, s]t : T.

For each case in the proof on the next page, write down the skeleton of the argument. A skeleton

contains the same sequence of steps as the full argument, but omits all details. The rules for writing

skeletons are as follows:

• Steps of the form “By part (x) of the inversion lemma, we obtain...” in the full argument become

“inversion(x)” in the skeleton.

• Steps of the form “By the substitution lemma, we obtain...” become “substitution.”

• Steps of the form “By the induction hypothesis, we obtain...” become “IH.”

• Steps of the form “By typing rule T­XXX, we obtain...” become “T­XXX.”

• If the full argument doesn’t use any of the lemmas or the induction hypothesis, then its skeleton

is “Direct.”

For example, if the full argument is

Case E­App1: t = t1 t2 t′ = t′1 t2 t1 -→ t′1

By part (c) of the inversion lemma, we obtain Γ ` t1 : T′→T and Γ ` t2 : T′. By the induction

hypothesis, we obtain Γ ` t′1 : T′→T. The required result (Γ ` t′1 t2 : T) now follows by

T­App.

the skeleton is written:

Case E­App1: t = t1 t2 t′ = t′1 t2 t1 -→ t′1

Inversion(c), IH, T­App.

continued...

8 WPE id / last name:Theorem [Preservation]: If t -→ t′ and Γ ` t : T, then Γ ` t′ : T.

Proof: By induction on evaluation derivations, with a case analysis on the final rule used.

Case E­App1: t = t1 t2 t′ = t′1 t2 t1 -→ t′1

Inversion(c), IH, T­App.

Case E­App2: t = v1 t2 t′ = v1 t
′
2 t2 -→ t′2

Case E­AppAbs: t = (λx:T11.t12) v2 t′ = [x, v2]t12

Case E­Rcd: t = {li=vi
i∈1..j−1,lj=tj,lk=tk

k∈j+1..n}

t′ = {li=vi
i∈1..j−1,lj=t

′
j,lk=tk

k∈j+1..n}

tj -→ t′j

Case E­Proj: t = t1.l t′ = t′1.l t1 -→ t′1

Case E­ProjRcd: t = {li=vi
i∈1..n}.lj t′ = vj

Grading scheme: 4 points per case. ­2 for missing or extra IH. ­1 for missing rule. ­1 for extraneous rule.

WPE id / last name: 9Exceptions: instead of counting off 2 points for a wrong but similar rule (i.e. the right rule is missing and

the wrong rule extraneous) only deducted 1 point. Also, only 1 point deducted for rules in transposed

order.

10 WPE id / last name:5. (3 points) Suppose we changed part (a) of the inversion lemma in problem 4 to match the one given

in chapter 15 of TAPL:

If Γ ` {ka=sa
a∈1..m} : {li:Ti

i∈1..n}, then {li
i∈1..n} ⊆ {ka

a∈1..m} and Γ ` sa : Ti for each

common label ka = li .

Which step would fail in the above proof of preservation? Briefly explain why.

Grading scheme: 1 point for mentioning E­Rcd; 0 points if E­Rcd not mentioned. ­1 for mentioning

cases besides E­Rcd. One additional point for an incomplete but not wrong explanation. Full credit for

explaining any of the difficulties listed in the sample answer above. (Strictly speaking, only the first

difficulty is correct: the new inversion lemma simply cannot be applied. But we still gave full credit to

answers that focused on the other difficulties.)

6. (3 points) Another natural­looking variant of part (a) of the inversion lemma is this:

If Γ ` {ki=si
i∈1..n} : T, then T = {ki:Ti

i∈1..n} and Γ ` si : Ti for each i ∈ 1..n.

Sadly, however, this variant is false.

Briefly explain why.

Grading scheme: This question was a bit hard to answer because the clear­cut part (the fact that the

lemma is problematic because of being false) was already given. Full credit was awarded for any answer

that suggested that the possibility of subsumption was not taken into account, or that gave a correct

counter­example. 2 points for “sort of correct” but garbled answers. 1 point for very brief or garbled

answers that mention the word “subtyping.” No points for explaining that the proof of preservation

doesn’t go through (it does go through, if we assume the lemma is true).

WPE id / last name: 11Subtyping

7. Suppose we add new types A, B, C, D, and E to the simply typed lambda­calculus with subtyping, along

with the following subtyping rules:

A <: B

B <: C

D <: E

A <: E

(a) (6 points) For each type S from the left­hand column and type T from the right­hand column such

that S <: T, draw a line connecting S to T.

Choices for S:

{x:D}→{y:A}

{y:B}

{x:A,y:A}

D

{x:B}

Choices for T:

E

{x:D}

{x:E}→{y:B}

{}

{y:E}

Grading scheme: One point off for each missing line; one point off for each incorrect line.

continued...

12 WPE id / last name:(b) (6 points) Recall the definitions of joins and meets in the subtype relation:

• A type J is called a join of a pair of types S and T if S <: J, T <: J, and, for all types U, if

S <: U and T <: U, then J <: U.

• A type M is a meet of S and T if M <: S, M <: T, and, for all types L, if L <: S and L <: T, then

L <: M.

Give the join and meet of each pair of types, where they exist (otherwise write “undefined.”)

i. {x:E, y:C} and {x:B, y:B}

join = meet =

ii. {x:B} and {y:B}

join = meet =

iii. {x:A} and {x:D}

join = meet =

Grading scheme: 1 point for each exactly correct answer. No partial credit.

(c) (3 points) How does the join of {x:A} and {x:D} change if we add the rule D <: B to the subtyping

judgment?

Grading scheme:

• full credit for “becomes undefined”

• no points for giving a join

• 1 point for saying something like “there are 2 possible joins”

• 1/2 points deducted for saying “undefined” plus something incorrect

• full credit for “unchanged” on papers where 7Biii was (incorrectly) marked as undefined

• 1 point for {} with a semi­reasonable explanation

WPE id / last name: 13Imperative object encodings

This problem involves an encoding of simple objects in the simply typed lambda­calculus with sub­

typing, records, references, and fixed points. This calculus is defined for your reference on pages 18

to 24.

8. (20 points) Consider the five following class definitions, in the style of TAPL Chapter 18:

R = {};

O = {m:Unit→Unit, n:Unit→Unit, o:Unit→Unit};

classA = λr:R. λself: Unit→O. λ_:Unit.

{m = λ_:Unit. (self unit).n unit,

n = λ_:Unit. (self unit).m unit,

o = λ_:Unit. unit };

classB = λr:R. λself: Unit→O. λ_:Unit.

let super = classA r self unit in

{m = λ_:Unit. unit,

n = super.n,

o = super.o };

classC = λr:R. λself: Unit→O. λ_:Unit.

let super = classA r self unit in

{m = super.m,

n = λ_:Unit. super.n unit,

o = super.o };

classD = λr:R. λself: Unit→O. λ_:Unit.

let super = classA r self unit in

{m = super.m,

n = λ_:Unit. super.o unit,

o = super.o };

classE = λr:R. λself: Unit→O. λ_:Unit.

let super = classA r self unit in

{m = (self unit).m,

n = super.n,

o = super.o };

Each of these classes produces objects with the same type, O, which offers three methods. Their state

representations are all the trivial record type, R. The methods m, n, and o all take Unit arguments and

return Unit results—that is, the only interesting thing about them is whether they diverge or converge.

The class classA is the “root class” from which the other four are derived.

continued...

14 WPE id / last name:Given these definitions, does evaluation of the following expressions converge (yielding unit) or di­

verge? For each one, circle the word “converges” or “diverges,” as appropriate.

((fix (classA {})) unit).n unit converges diverges

((fix (classA {})) unit).o unit converges diverges

((fix (classB {})) unit).n unit converges diverges

((fix (classB {})) unit).o unit converges diverges

((fix (classC {})) unit).n unit converges diverges

((fix (classC {})) unit).o unit converges diverges

((fix (classD {})) unit).n unit converges diverges

((fix (classD {})) unit).o unit converges diverges

((fix (classE {})) unit).n unit converges diverges

((fix (classE {})) unit).o unit converges diverges

WPE id / last name: 15Featherweight Java

The definition of Featherweight Java is reproduced on pages 25 to 27.

9. (a) (16 points)

Chapter 3 of TAPL introduced an alternative big­step style for presenting evaluation relations, in

which each rule shows how to evaluate a term of a particular form “all the way” to a final value,

rather than just showing how to make it take a single step. For example, in the lambda­calculus

with booleans, the usual small step evaluation rules for if...

if true then t2 else t3 -→ t2

if false then t2 else t3 -→ t3

t1 -→ t′1

if t1 then t2 else t3 -→ if t′1 then t2 else t3

correspond to the following big­step rules:

t1 ⇓ true t2 ⇓ v2

if t1 then t2 else t3 ⇓ v2

t1 ⇓ false t3 ⇓ v3

if t1 then t2 else t3 ⇓ v3

continued...

16 WPE id / last name:Write down a big step evaluation relation for Featherweight Java. (You’ll need four inference

rules.)

Grading scheme:

• 4 points per rule.

• For all rules:

– ­2 points for using a value instead of a term on the LHS.

– ­4 points for a loop in the operational semantics.

– +/­ points for being very close or very wrong.

• Individual rules: Cast:

– ­1 for no subtyping constraint.

– ­2 for no class mentioned in the new expression.

– ­1 for evaluating to wrong type.

• Prj.:

– ­2 for no class mentioned in the record evaluation.

– ­1 for no constraint that project field exists

– ­3 for not projecting from the record

• Meth:

– ­2 for no substitution at all

– ­3 for substitution in the conclusion

continued...

WPE id / last name: 17(b) (5 points) State the preservation theorem for the big­step variant of FJ.

Grading scheme:

• No deduction for omitting Γ

• Either v or new C(v) accepted for the value

• ­2 for omitting t ⇓ v

• ­3 for neglecting the fact that the new type can be a subtype of old type

• hand­wavy english, correct but too vague = 1/5

• weird stuff that looks a tiny bit right = 1/5

For reference: Simply typed lambda calculus with records (and Nat, Bool, and Unit)

Syntax

t ::= terms

unit constant unit

{li=ti
i∈1..n} record

t.l projection

x variable

λx:T.t abstraction

t t application

true constant true

false constant false

if t then t else t conditional

0 constant zero

succ t successor

pred t predecessor

iszero t zero test

v ::= values

unit constant unit

{li=vi
i∈1..n} record value

λx:T.t abstraction value

true true value

false false value

nv numeric value

T ::= types

Unit unit type

{li:Ti
i∈1..n} type of records

Bool type of booleans

Nat type of natural numbers

T→T type of functions

Γ ::= contexts

∅ empty context

Γ , x:T term variable binding

nv ::= numeric values

0 zero value

succ nv successor value

18

Evaluation t -→ t′

{li=vi
i∈1..n}.lj -→ vj (E­ProjRcd)

t1 -→ t′1

t1.l -→ t′1.l
(E­Proj)

tj -→ t′j

{li=vi
i∈1..j−1,lj=tj,lk=tk

k∈j+1..n}

-→ {li=vi
i∈1..j−1,lj=t

′
j,lk=tk

k∈j+1..n}

(E­Rcd)

t1 -→ t′1

t1 t2 -→ t′1 t2

(E­App1)

t2 -→ t′2

v1 t2 -→ v1 t
′
2

(E­App2)

(λx:T11.t12) v2 -→ [x, v2]t12 (E­AppAbs)

if true then t2 else t3 -→ t2 (E­IfTrue)

if false then t2 else t3 -→ t3 (E­IfFalse)

t1 -→ t′1

if t1 then t2 else t3 -→ if t′1 then t2 else t3

(E­If)

t1 -→ t′1

succ t1 -→ succ t′1
(E­Succ)

pred 0 -→ 0 (E­PredZero)

pred (succ nv1) -→ nv1 (E­PredSucc)

t1 -→ t′1

pred t1 -→ pred t′1
(E­Pred)

iszero 0 -→ true (E­IszeroZero)

iszero (succ nv1) -→ false (E­IszeroSucc)

t1 -→ t′1

iszero t1 -→ iszero t′1
(E­IsZero)

Typing Γ ` t : T

Γ ` unit : Unit (T­Unit)

for each i Γ ` ti : Ti

Γ ` {li=ti
i∈1..n} : {li:Ti

i∈1..n}
(T­Rcd)

Γ ` t1 : {li:Ti
i∈1..n}

Γ ` t1.lj : Tj
(T­Proj)

Γ `true : Bool (T­True)

Γ `false : Bool (T­False)

Γ `t1 : Bool Γ `t2 : T Γ `t3 : T

Γ `if t1 then t2 else t3 : T
(T­If)

19

Γ `0 : Nat (T­Zero)

Γ `t1 : Nat

Γ `succ t1 : Nat
(T­Succ)

Γ `t1 : Nat

Γ `pred t1 : Nat
(T­Pred)

Γ `t1 : Nat

Γ `iszero t1 : Bool
(T­IsZero)

x:T ∈ Γ

Γ ` x : T
(T­Var)

Γ , x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2

(T­Abs)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T­App)

20

For reference: Subtyping

New syntactic forms

T ::= ... types

Top maximum type

New subtyping rules S <: T

S <: S (S­Refl)

S <: U U <: T

S <: T
(S­Trans)

S <: Top (S­Top)

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2

(S­Arrow)

{li:Ti
i∈1..n+k} <: {li:Ti

i∈1..n} (S­RcdWidth)

for each i Si <: Ti

{li:Si
i∈1..n} <: {li:Ti

i∈1..n}
(S­RcdDepth)

{kj:Sj
j∈1..n} is a permutation of {li:Ti

i∈1..n}

{kj:Sj
j∈1..n} <: {li:Ti

i∈1..n}
(S­RcdPerm)

New typing rules Γ ` t : T

Γ ` t : S S <: T

Γ ` t : T
(T­Sub)

21

For reference: References, Fix, and let

New syntactic forms

t ::= ... terms

ref t reference creation

!t dereference

t:=t assignment

l store location

let x=t in t let binding

fix t fixed point of t

v ::= ... values

l store location

T ::= ... types

Ref T type of reference cells

µ ::= ... stores

∅ empty store

µ, l = v location binding

Σ ::= ... store typings

∅ empty store typing

Σ, l:T location typing

New evaluation rules t | µ -→ t′ | µ′

t1| µ -→ t′1| µ
′

t1 t2| µ -→ t′1 t2| µ
′

(E­App1)

t2| µ -→ t′2| µ
′

v1 t2| µ -→ v1 t
′
2| µ

′
(E­App2)

(λx:T11.t12) v2| µ -→ [x, v2]t12| µ (E­AppAbs)

{li=vi
i∈1..n}.lj| µ -→ vj | µ (E­ProjRcd)

t1| µ -→ t′1| µ
′

t1.l| µ -→ t′1.l| µ
′

(E­Proj)

tj | µ -→ t′j | µ
′

{li=vi
i∈1..j−1,lj=tj,lk=tk

k∈j+1..n}| µ

-→ {li=vi
i∈1..j−1,lj=t

′
j,lk=tk

k∈j+1..n}| µ′

(E­Rcd)

l ∉ dom(µ)

ref v1 | µ -→ l | (µ, l , v1)
(E­RefV)

t1 | µ -→ t′1 | µ
′

ref t1 | µ -→ ref t′1 | µ
′

(E­Ref)

µ(l) = v

!l | µ -→ v | µ
(E­DerefLoc)

22

t1 | µ -→ t′1 | µ
′

!t1 | µ -→ !t′1 | µ
′

(E­Deref)

l:=v2 | µ -→ unit | [l , v2]µ (E­Assign)

t1 | µ -→ t′1 | µ
′

t1:=t2 | µ -→ t′1:=t2 | µ
′

(E­Assign1)

t2 | µ -→ t′2 | µ
′

v1:=t2 | µ -→ v1:=t
′
2 | µ

′
(E­Assign2)

if true then t2 else t3| µ -→ t2| µ (E­IfTrue)

if false then t2 else t3| µ -→ t3| µ (E­IfFalse)

t1| µ -→ t′1| µ
′

if t1 then t2 else t3| µ -→ if t′1 then t2 else t3| µ
′

(E­If)

t1| µ -→ t′1| µ
′

succ t1| µ -→ succ t′1| µ
′

(E­Succ)

pred 0| µ -→ 0| µ (E­PredZero)

pred (succ nv1)| µ -→ nv1| µ (E­PredSucc)

t1| µ -→ t′1| µ
′

pred t1| µ -→ pred t′1| µ
(E­Pred)

iszero 0| µ -→ true| µ (E­IszeroZero)

iszero (succ nv1)| µ -→ false| µ (E­IszeroSucc)

t1| µ -→ t′1| µ
′

iszero t1| µ -→ iszero t′1| µ
′

(E­IsZero)

let x=v1 in t2| µ -→ [x, v1]t2| µ (E­LetV)

t1| µ -→ t′1| µ
′

let x=t1 in t2| µ -→ let x=t′1 in t2| µ
′

(E­Let)

fix (λx:T1.t2)| µ

-→ [x, (fix (λx:T1.t2))]t2| µ
(E­FixBeta)

t1| µ -→ t′1| µ
′

fix t1| µ -→ fix t′1| µ
(E­Fix)

New subtyping rules S <: T

S1 <: T1 T1 <: S1

Ref S1 <: Ref T1

(S­Ref)

New typing rules Γ | Σ ` t : T

x:T ∈ Γ

Γ | Σ ` x : T
(T­Var)

Γ , x:T1| Σ ` t2 : T2

Γ | Σ ` λx:T1.t2 : T1→T2

(T­Abs)

23

Γ | Σ ` t1 : T11→T12 Γ | Σ ` t2 : T11

Γ | Σ ` t1 t2 : T12

(T­App)

Γ | Σ ` unit : Unit (T­Unit)

Σ(l) = T1

Γ | Σ ` l : Ref T1

(T­Loc)

Γ | Σ ` t1 : T1

Γ | Σ ` ref t1 : Ref T1

(T­Ref)

Γ | Σ ` t1 : Ref T11

Γ | Σ ` !t1 : T11

(T­Deref)

Γ | Σ ` t1 : Ref T11 Γ | Σ ` t2 : T11

Γ | Σ ` t1:=t2 : Unit
(T­Assign)

Γ ` t1 : T1 Γ , x:T1 ` t2 : T2

Γ ` let x=t1 in t2 : T2

(T­Let)

Γ ` t1 : T1→T1

Γ ` fix t1 : T1

(T­Fix)

24

For reference: FJ

Syntax

CL ::= class declarations

class C extends C {C f; K M}

K ::= constructor declarations

C(C f) {super(f); this.f=f;}

M ::= method declarations

C m(C x) {return t;}

t ::= terms

x variable

t.f field access

t.m(t) method invocation

new C(t) object creation

(C) t cast

v ::= values

new C(v) object creation

Subtyping C<:D

C <: C

C <: D D <: E

C <: E

CT(C) = class C extends D {...}

C <: D

Field lookup fields(C) = C f

fields(Object) = •

CT(C) = class C extends D {C f; K M}

fields(D) = D g

fields(C) = D g, C f

Method type lookup mtype(m,C) = C→C

CT(C) = class C extends D {C f; K M}

B m (B x) {return t;} ∈ M

mtype(m,C) = B→B

CT(C) = class C extends D {C f; K M}

m is not defined in M

mtype(m,C) = mtype(m,D)

Method body lookup mbody(m,C) = (x,t)

25

CT(C) = class C extends D {C f; K M}

B m (B x) {return t;} ∈ M

mbody(m,C) = (x,t)

CT(C) = class C extends D {C f; K M}

m is not defined in M

mbody(m,C) = mbody(m,D)

Valid method overriding override(m, D, C→C0)

mtype(m,D) = D→D0 implies C = D and C0 = D0

override(m, D, C→C0)

Evaluation t -→ t′

fields(C) = C f

(new C(v)).fi -→ vi
(E­ProjNew)

mbody(m,C) = (x,t0)

(new C(v)).m(u) -→ [x, u, this, new C(v)]t0

(E­InvkNew)

C <: D

(D)(new C(v)) -→ new C(v)
(E­CastNew)

t0 -→ t′0

t0.f -→ t′0.f
(E­Field)

t0 -→ t′0

t0.m(t) -→ t′0.m(t)
(E­Invk­Recv)

ti -→ t′i

v0.m(v, ti, t)

-→ v0.m(v, t
′
i, t)

(E­Invk­Arg)

ti -→ t′i

new C(v, ti, t)

-→ new C(v, t′i, t)

(E­New­Arg)

t0 -→ t′0

(C)t0 -→ (C)t′0
(E­Cast)

Term typing Γ ` t : C

x:C ∈ Γ

Γ ` x : C
(T­Var)

Γ ` t0 : C0 fields(C0) = C f

Γ ` t0.fi : Ci
(T­Field)

Γ ` t0 : C0

mtype(m,C0) = D→C

Γ ` t : C C <: D

Γ ` t0.m(t) : C
(T­Invk)

26

fields(C) = D f

Γ ` t : C C <: D

Γ ` new C(t) : C
(T­New)

Γ ` t0 : D D <: C

Γ ` (C)t0 : C
(T­UCast)

Γ ` t0 : D C <: D C ≠ D

Γ ` (C)t0 : C
(T­DCast)

Γ ` t0 : D C 6<: D D 6<: C

stupid warning

Γ ` (C)t0 : C
(T­SCast)

Method typing M OK in C

x : C, this : C ` t0 : E0 E0 <: C0

CT(C) = class C extends D {...}

override(m, D, C→C0)

C0 m (C x) {return t0;} OK in C

Class typing C OK

K = C(D g, C f) {super(g); this.f = f;}

fields(D) = D g M OK in C

class C extends D {C f; K M} OK

27

