
CIS 500 — Software Foundations

Midterm II

November 13, 2002

Name:

Student ID:

(from your PennCard)

Email

Score

1

2

3

4

5

6

7

8

Total

Instructions

• This is a closedbook exam: you may not make use of any books or notes.

• You have 80 minutes to answer all of the questions. The entire exam is worth 80 points.

• Questions vary significantly in difficulty, and the point value of a given question is not always exactly

proportional to its difficulty. Do not spend too much time on any one question.

• Partial credit will be given. All correct answers are short. The back side of each page may be used as a

scratch pad.

• Good luck!

1

Simply typed lambdacalculus

The definition of the simply typed lambdacalculus with Unit is reproduced on page 15.

1. (8 points) For each of the following untyped λterms, either give a welltyped term of the simply typed

lambdacalculus with Unit whose erasure is the given term, or else write “not typable” if no such term

exists.

The type annotations in your answers should only involve Unit and →.

(a) λx. x (x unit)

(b) λx. x unit x

(c) λx. x unit unit

(d) λx. λy. λz. (x y) (y z)

2

References

The definition of the simply typed lambdacalculus with references is reproduced on page 15.

2. (9 points) Suppose, for this question, that our language also has let expressions and numbers. Then

evaluating the expression

let x = ref 5 in

let y = x in

let z = ref (λa:Nat. y := a; succ (!y)) in

(!z) (!y)

beginning in an empty store yields:

Result: 6 Store: l1 , 5

l2 , λa:Nat. l1 := a; succ (!l1)

Fill in the results and final stores (when started with an empty store) of the following terms:

(a) let x = ref 2 in

let y = x in

let f = λa:Ref Nat. λb:Ref Nat. a := 5; b := 6; !a in

f x y

Result: Store:

(b) let x = ref 2 in

let y = ref x in

let z = ref y in

!z

Result: Store:

3

(c) let x = ref 0 in

let f = ref (λu:Unit. !x) in

x := 2;

let g = λu:Unit. (!f) unit in

x := 3;

f := λu:Unit. succ (!x) in

let r = g unit in

x := 9;

r

Result: Store:

4

3. (3 points) Is there any welltyped term that, when started with an empty store, will yield the following

store?

l1 , l1

If so, give one. If not, explain (briefly!) why not.

5

4. (8 points) We saw in homework 8 that, using references, we can achieve the effect of a recursive

function definition by building a “cyclic store” in which the function’s body refers to its own defi

nition indirectly, via a reference cell. The same idea extends straightforwardly to mutually recursive

definitions.

Fill in the blanks in the following expressions so that, after evaluating them, even will be a function

that checks whether its argument n is even (by returning true if it is 0 and otherwise checking whether

(pred n) is odd).

evenref = ref (λn:Nat.true);

oddref = ref (λn:Nat.true);

evenbody = λn:Nat. if iszero n then true else ((___________)(pred n));

oddbody = λn:Nat. if iszero n then false else ((___________)(pred n));

evenref := __________________;

oddref := __________________;

even = !evenref;

odd = !oddref;

6

5. (20 points) In Chapter 13 of TAPL, the following lemmas were used in proving the preservation prop

erty for the simply typed lambdacalculus with references. (We’ve given all the lemmas names here,

for easy reference.)

Lemma [Inversion]:

(a) If Γ | Σ ` x : T, then x:T ∈ Γ .

(b) If Γ | Σ ` λx:T1. t2 : T, then T = T1→T2 for some T2 with Γ , x:T1 | Σ ` t2 : T2.

(c) If Γ | Σ ` t1 t2 : T, then there is some type T11 such that Γ | Σ ` t1 : T11→T and Γ | Σ ` t2 :
T11.

(d) If Γ | Σ ` unit : T, then T = Unit.

(e) If Γ | Σ ` ref t1 : T, then T = Ref T1 and Γ | Σ ` t1 ∈ T1.

(f) If Γ | Σ ` !t1 : T, then T = T11 with Γ | Σ ` t1 ∈ Ref T11.

(g) If Γ | Σ ` t1:=t2 : T, then T = Unit and Γ | Σ ` t1 ∈ Ref T11 and Γ | Σ ` t2 : T11.

(h) If Γ | Σ ` l : T, then T = Ref Σ(l).

Lemma [Substitution]: If Γ , x:S | Σ ` t : T and Γ | Σ ` s : S, then Γ | Σ ` [x, s]t : T.

Lemma [Replacement]: If

Γ | Σ ` µ

Σ(l) = T

Γ | Σ ` v : T

then Γ | Σ ` [l , v]µ.

Lemma [Weakening]: If Γ | Σ ` t : T and Σ′ ⊇ Σ, then Γ | Σ′ ` t : T.

For each case in the proof on the next page, write down the skeleton of the argument. A skeleton

contains the same sequence of steps as the full argument, but omits all details. The rules for writing

skeletons are as follows:

• Steps of the form “By part (x) of the inversion lemma, we obtain...” in the full argument become

“inversion(x)” in the skeleton.

• Steps of the form “By the substitution lemma, we obtain...” become “substitution.” (Similarly for

replacement and weakening.)

• Steps of the form “By the induction hypothesis, we obtain...” become “IH.”

• Steps of the form “By typing rule TXXX, we obtain...” become “TXXX.”

• If the full argument doesn’t use any of the lemmas or the induction hypothesis, then its skeleton

is “Direct.”

For example, if the full argument is

Case EDerefLoc: t = !l t′ = µ(l) µ′ = µ

By part (f) of the inversion lemma, T = T11, and Γ | Σ ` l : Ref T11. By part (h) of the

inversion lemma, T11 = Ref Σ(l), i.e., T = T11 = Σ(l). But now, from the assumption that

Γ | Σ ` µ, we can conclude (by the definition of Γ | Σ ` µ) that Γ | Σ ` µ(l) : Σ(l).

the skeleton is written:

Case EDerefLoc: t = !l t′ = µ(l) µ′ = µ

Inversion(f), inversion(h)

As a second example, the case for ERef is also given below.

7

Theorem [Preservation]: If

Γ | Σ ` t : T

Γ | Σ ` µ (i.e., dom(µ) = dom(Σ) and Γ | Σ ` µ(l) : Σ(l) for every l ∈ dom(µ))

t | µ -→ t′ | µ′

then, for some Σ′ ⊇ Σ,

Γ | Σ′ ` t′ : T

Γ | Σ′ ` µ′.

Proof: By induction on evaluation derivations, with a case analysis on the final rule used.

Case EApp1: t = t1 t2 t1| µ -→ t′1| µ
′ t′ = t′1 t2

Case EApp2:

Similar.

Case EAppAbs: t = (λx:T11.t12) v2 t′ = [x, v2]t12 µ′ = µ

Case ERef: t = ref t1 t′ = ref t′1 t1 | µ -→ t′1 | µ
′

inversion(e), IH, TRef

Case EDerefLoc: t = !l t′ = µ(l) µ′ = µ

Inversion(f), inversion(h)

Case EDeref: !t1 | µ -→ !t′1 | µ
′

Case EAssign: t = l:=v2 t′ = unit µ′ = [l , v2]µ

Case EAssign1: t = t1:=t2 t′ = t′1:=t2 t1 | µ -→ t′1 | µ
′

Case EAssign2:

Similar.

8

Subtyping

The definition of the simply typed lambdacalculus with records and subtyping is reproduced for your

reference on page 17.

6. (11 points) For each type S from the lefthand column below, draw a line connecting it to each type T

in the righthand column such that S <: T.

Choices for S:

{a:{}, b:{x:Top}}

Top→Top

{}→{}

Top

({a:Top}→{})→{b:Top}

{b:Top→Top}

Choices for T:

({}→{a:Top})→{}

Top→Top

{}→Top

Top→{}

{b:Top}

{b:{}}

9

7. (12 points) It is easy to show, by induction on subtyping derivations, that

Lemma A: If Top <: T, then T = Top.

A similar, but slightly more interesting, lemma holds for supertypes of arrow types.

Lemma B: If S1→S2 <: T, then either T = Top or else T has the form T1→T2, with T1 <: S1 and

S2 <: T2.

Fill in the arguments for the SArrow and STrans cases of its proof.

Proof: By induction on subtyping derivations. Proceed by a case analysis on the last rule used in

the derivation.

Case SRefl: T = S1→S2

T clearly has the required form, with T1 = S1 and T2 = S2. The inclusions T1 <: S1 and S2 <: T2

both follow by SRefl.

Case STrans: S1→S2 <: U U <: T

Fill in:

Case SArrow: T = T1→T2 T1 <: S1 and S2 <: T2

Fill in:

Case STop: T = Top

Immediate.

Case SRcdWidth, SRcdDepth, SRcdPerm, STop:

Can’t happen: T has the wrong form.

10

8. (9 points) Suppose we remove rule SArrow from the subtype relation. Which of the following prop

erties will remain true? For each one, write either “true” (if it remains true) or else “false” (if it becomes

false), plus (in either case) a onesentence justification of your answer.

(a) Existence of minimal types (if term t is typable in context Γ , then there is some type S such that

Γ ` t : S and, for every type T such that Γ ` t : T, we have S <: T)

(b) Progress (if t is a closed, welltyped term, then either t is a value or else t -→ t′ for some t′)

(c) Preservation (if t has type T and t -→ t′, then t′ also has type T)

11

For reference: Simply typed lambda calculus with Unit

Syntax

t ::= terms

unit constant unit

x variable

λx:T.t abstraction

t t application

v ::= values

unit constant unit

λx:T.t abstraction value

T ::= types

Unit unit type

T→T type of functions

Γ ::= contexts

∅ empty context

Γ , x:T term variable binding

Evaluation t -→ t′

t1 -→ t′1

t1 t2 -→ t′1 t2

(EApp1)

t2 -→ t′2

v1 t2 -→ v1 t
′
2

(EApp2)

(λx:T11.t12) v2 -→ [x, v2]t12 (EAppAbs)

Typing Γ ` t : T

Γ ` unit : Unit (TUnit)

x:T ∈ Γ

Γ ` x : T
(TVar)

Γ , x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2

(TAbs)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(TApp)

12

For reference: References

New syntactic forms

t ::= ... terms

ref t reference creation

!t dereference

t:=t assignment

l store location

v ::= ... values

l store location

T ::= ... types

Ref T type of reference cells

µ ::= ... stores

∅ empty store

µ, l = v location binding

Σ ::= ... store typings

∅ empty store typing

Σ, l:T location typing

New evaluation rules t | µ -→ t′ | µ′

t1| µ -→ t′1| µ
′

t1 t2| µ -→ t′1 t2| µ
′

(EApp1)

t2| µ -→ t′2| µ
′

v1 t2| µ -→ v1 t
′
2| µ

′
(EApp2)

(λx:T11.t12) v2| µ -→ [x, v2]t12| µ (EAppAbs)

l ∉ dom(µ)

ref v1 | µ -→ l | (µ, l , v1)
(ERefV)

t1 | µ -→ t′1 | µ
′

ref t1 | µ -→ ref t′1 | µ
′

(ERef)

µ(l) = v

!l | µ -→ v | µ
(EDerefLoc)

t1 | µ -→ t′1 | µ
′

!t1 | µ -→ !t′1 | µ
′

(EDeref)

l:=v2 | µ -→ unit | [l , v2]µ (EAssign)

t1 | µ -→ t′1 | µ
′

t1:=t2 | µ -→ t′1:=t2 | µ
′

(EAssign1)

13

t2 | µ -→ t′2 | µ
′

v1:=t2 | µ -→ v1:=t
′
2 | µ

′
(EAssign2)

New typing rules Γ | Σ ` t : T

Γ | Σ ` unit : Unit (TUnit)

x:T ∈ Γ

Γ | Σ ` x : T
(TVar)

Γ , x:T1| Σ ` t2 : T2

Γ | Σ ` λx:T1.t2 : T1→T2

(TAbs)

Γ | Σ ` t1 : T11→T12 Γ | Σ ` t2 : T11

Γ | Σ ` t1 t2 : T12

(TApp)

Σ(l) = T1

Γ | Σ ` l : Ref T1

(TLoc)

Γ | Σ ` t1 : T1

Γ | Σ ` ref t1 : Ref T1

(TRef)

Γ | Σ ` t1 : Ref T11

Γ | Σ ` !t1 : T11

(TDeref)

Γ | Σ ` t1 : Ref T11 Γ | Σ ` t2 : T11

Γ | Σ ` t1:=t2 : Unit
(TAssign)

14

For reference: Simply typed lambda calculus with records and subtyping

New syntactic forms

t ::= ... terms

{li=ti
i∈1..n} record

t.l projection

v ::= ... values

{li=vi
i∈1..n} record value

T ::= ... types

{li:Ti
i∈1..n} type of records

Top maximum type

New evaluation rules t -→ t′

{li=vi
i∈1..n}.lj -→ vj (EProjRcd)

t1 -→ t′1

t1.l -→ t′1.l
(EProj)

tj -→ t′j

{li=vi
i∈1..j−1,lj=tj,lk=tk

k∈j+1..n}

-→ {li=vi
i∈1..j−1,lj=t

′
j,lk=tk

k∈j+1..n}

(ERcd)

New subtyping rules S <: T

S <: S (SRefl)

S <: U U <: T

S <: T
(STrans)

S <: Top (STop)

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2

(SArrow)

{li:Ti
i∈1..n+k} <: {li:Ti

i∈1..n} (SRcdWidth)

for each i Si <: Ti

{li:Si
i∈1..n} <: {li:Ti

i∈1..n}
(SRcdDepth)

{kj:Sj
j∈1..n} is a permutation of {li:Ti

i∈1..n}

{kj:Sj
j∈1..n} <: {li:Ti

i∈1..n}
(SRcdPerm)

New typing rules Γ ` t : T

for each i Γ ` ti : Ti

Γ ` {li=ti
i∈1..n} : {li:Ti

i∈1..n}
(TRcd)

Γ ` t1 : {li:Ti
i∈1..n}

Γ ` t1.lj : Tj
(TProj)

Γ ` t : S S <: T

Γ ` t : T
(TSub)

15

