CIS 500 - Software Foundations
 Midterm II

November 13, 2002

Name:

Student ID:
(from your PennCard)

Email

	Score
1	
2	
3	
4	
5	
6	
7	
8	
Total	

Instructions

- This is a closed-book exam: you may not make use of any books or notes.
- You have 80 minutes to answer all of the questions. The entire exam is worth 80 points.
- Questions vary significantly in difficulty, and the point value of a given question is not always exactly proportional to its difficulty. Do not spend too much time on any one question.
- Partial credit will be given. All correct answers are short. The back side of each page may be used as a scratch pad.
- Good luck!

Simply typed lambda-calculus

The definition of the simply typed lambda-calculus with Unit is reproduced on page 15.

1. (8 points) For each of the following untyped λ-terms, either give a well-typed term of the simply typed lambda-calculus with Unit whose erasure is the given term, or else write "not typable" if no such term exists.

The type annotations in your answers should only involve Unit and \rightarrow.
(a) $\lambda x \cdot x(x u n i t)$
(b) $\lambda x \cdot x$ unit x
(c) $\lambda x \cdot x$ unitunit
(d) $\lambda x \cdot \lambda y \cdot \lambda z \cdot(x y)(y z)$

References

The definition of the simply typed lambda-calculus with references is reproduced on page 15 .
2. (9 points) Suppose, for this question, that our language also has 1et expressions and numbers. Then evaluating the expression

```
let x = ref 5 in
1et y = x in
let z = ref (\lambdaa:Nat. y := a; succ (!y)) in
(!z) (!y)
```

beginning in an empty store yields:
Result: 6
Store: $\quad l_{1} \mapsto 5$
$l_{2} \mapsto \lambda \mathrm{a}:$ Nat. $l_{1}:=\mathrm{a} ; \operatorname{succ}\left(!l_{1}\right)$
Fill in the results and final stores (when started with an empty store) of the following terms:
(a) 1et $x=\operatorname{ref} 2$ in

1et $y=x$ in
 f x y
Result: Store:
(b) 1et $x=$ ref 2 in let $y=r e f x$ in let $z=r e f y i n$!z
Result: Store:
(c) let $x=$ ref 0 in
let $f=r e f(\lambda u: U n i t . ~!x) ~ i n ~$
$x:=2$;
let $g=\lambda u: U n i t .(!f)$ unit $i n$
x := 3;
$f:=\lambda u: U n i t . \operatorname{succ}(!x)$ in
let $r=g$ unit in
$\mathrm{x}:=9$;
r
Result:
Store:
3. (3 points) Is there any well-typed term that, when started with an empty store, will yield the following store?

$$
l_{1} \mapsto l_{1}
$$

If so, give one. If not, explain (briefly!) why not.
4. (8 points) We saw in homework 8 that, using references, we can achieve the effect of a recursive function definition by building a "cyclic store" in which the function's body refers to its own definition indirectly, via a reference cell. The same idea extends straightforwardly to mutually recursive definitions.

Fill in the blanks in the following expressions so that, after evaluating them, even will be a function that checks whether its argument n is even (by returning true if it is 0 and otherwise checking whether (pred n) is odd).

```
even \(_{\text {ref }}=\) ref ( \(\lambda\) n:Nat.true);
odd \(_{r e f}=\) ref ( \(\lambda \mathrm{n}:\) Nat.true);
even \(_{\text {body }}=\lambda \mathrm{n}\) :Nat. if iszero n then true else \(((\ldots)\) (pred n\(\left.)\right)\);
odd \(_{\text {body }}=\lambda \mathrm{n}\) :Nat. if iszero n then false else ( (___) (pred n\()\) );
even \(_{r e f}:=\)
odd \(_{\text {ref }} \quad:=\)
```

\qquad

```
even \(=\) ! even \(_{r e f}\);
odd \(=\) !odd \(_{r e f}\);
```

5. (20 points) In Chapter 13 of TAPL, the following lemmas were used in proving the preservation property for the simply typed lambda-calculus with references. (We've given all the lemmas names here, for easy reference.)

LEMMA [INVERSION]:

(a) If $\Gamma \mid \Sigma \vdash x: T$, then $x: T \in \Gamma$.
(b) If $\Gamma \mid \Sigma \vdash \lambda x: T_{1} . t_{2}: T$, then $T=T_{1} \rightarrow T_{2}$ for some T_{2} with $\Gamma, x: T_{1} \mid \Sigma \vdash t_{2}: T_{2}$.
(c) If $\Gamma \mid \Sigma \vdash \mathrm{t}_{1} \mathrm{t}_{2}: \mathrm{T}$, then there is some type T_{11} such that $\Gamma \mid \Sigma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}$ and $\Gamma \mid \Sigma \vdash \mathrm{t}_{2}$: T_{11}.
(d) If $\Gamma \mid \Sigma \vdash$ unit : T, then $T=$ Unit.
(e) If $\Gamma \mid \Sigma \vdash \operatorname{ref} \mathrm{t}_{1}: \mathrm{T}$, then $\mathrm{T}=\operatorname{Ref} \mathrm{T}_{1}$ and $\Gamma \mid \Sigma \vdash \mathrm{t}_{1} \in \mathrm{~T}_{1}$.
(f) If $\Gamma \mid \Sigma \vdash!\mathrm{t}_{1}: \mathrm{T}$, then $\mathrm{T}=\mathrm{T}_{11}$ with $\Gamma \mid \Sigma \vdash \mathrm{t}_{1} \in \operatorname{Ref} \mathrm{~T}_{11}$.
(g) If $\Gamma \mid \Sigma \vdash \mathrm{t}_{1}:=\mathrm{t}_{2}: \mathrm{T}$, then $\mathrm{T}=$ Unit and $\Gamma \mid \Sigma \vdash \mathrm{t}_{1} \in \operatorname{Ref}^{11}$ and $\Gamma \mid \Sigma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}$.
(h) If $\Gamma \mid \Sigma \vdash l: T$, then $T=\operatorname{Ref} \Sigma(l)$.

Lemma [Substitution]: If $\Gamma, \mathrm{x}: \mathrm{S} \mid \Sigma \vdash \mathrm{t}: \mathrm{T}$ and $\Gamma \mid \Sigma \vdash \mathrm{s}: \mathrm{S}$, then $\Gamma \mid \Sigma \vdash[\mathrm{x} \mapsto \mathrm{s}] \mathrm{t}: \mathrm{T}$.
Lemma [REPLACEMENT]: If

$$
\begin{aligned}
& \Gamma \mid \Sigma \vdash \mu \\
& \Sigma(l)=\mathrm{T} \\
& \Gamma \mid \Sigma \vdash \mathrm{v}: \mathrm{T}
\end{aligned}
$$

then $\Gamma \mid \Sigma \vdash[l \mapsto \mathrm{v}] \mu$.
Lemma [Weakening]: If $\Gamma \mid \Sigma \vdash \mathrm{t}: \mathrm{T}$ and $\Sigma^{\prime} \supseteq \Sigma$, then $\Gamma \mid \Sigma^{\prime} \vdash \mathrm{t}: \mathrm{T}$.
For each case in the proof on the next page, write down the skeleton of the argument. A skeleton contains the same sequence of steps as the full argument, but omits all details. The rules for writing skeletons are as follows:

- Steps of the form "By part (x) of the inversion lemma, we obtain..." in the full argument become "inversion(x)" in the skeleton.
- Steps of the form "By the substitution lemma, we obtain..." become "substitution." (Similarly for replacement and weakening.)
- Steps of the form "By the induction hypothesis, we obtain..." become "IH."
- Steps of the form "By typing rule T-XXX, we obtain..." become "T-XXX."
- If the full argument doesn't use any of the lemmas or the induction hypothesis, then its skeleton is "Direct."

For example, if the full argument is
Case E-DEREFLOC: $\quad \mathrm{t}=!1 \quad \mathrm{t}^{\prime}=\mu(l) \quad \mu^{\prime}=\mu$
By part (f) of the inversion lemma, $T=T_{11}$, and $\Gamma \mid \Sigma \vdash l: \operatorname{Ref} T_{11}$. By part (h) of the inversion lemma, $\mathrm{T}_{11}=\operatorname{Ref} \Sigma(l)$, i.e., $\mathrm{T}=\mathrm{T}_{11}=\Sigma(l)$. But now, from the assumption that $\Gamma \mid \Sigma \vdash \mu$, we can conclude (by the definition of $\Gamma \mid \Sigma \vdash \mu$) that $\Gamma \mid \Sigma \vdash \mu(l): \Sigma(l)$.
the skeleton is written:
Case E-DEREFLOC: $\quad \mathrm{t}=!l \quad \mathrm{t}^{\prime}=\mu(l) \quad \mu^{\prime}=\mu$
Inversion(f), inversion(h)
As a second example, the case for E-REF is also given below.

Theorem [Preservation]: If

```
\(\Gamma \mid \Sigma \vdash \mathrm{t}: ~ \mathrm{~T}\)
\(\Gamma \mid \Sigma \vdash \mu \quad\) (i.e., \(\operatorname{dom}(\mu)=\operatorname{dom}(\Sigma)\) and \(\Gamma \mid \Sigma \vdash \mu(l): \Sigma(l)\) for every \(l \in \operatorname{dom}(\mu))\)
\(\mathrm{t}\left|\mu \rightarrow \mathrm{t}^{\prime}\right| \mu^{\prime}\)
```

then, for some $\Sigma^{\prime} \supseteq \Sigma$,
$\Gamma \mid \Sigma^{\prime} \vdash \mathrm{t}^{\prime}: \mathrm{T}$
$\Gamma \mid \Sigma^{\prime} \vdash \mu^{\prime}$.

Proof: By induction on evaluation derivations, with a case analysis on the final rule used.
Case E-APP1: $\quad \mathrm{t}=\mathrm{t}_{1} \mathrm{t}_{2} \quad \mathrm{t}_{1}\left|\mu \rightarrow \mathrm{t}_{1}^{\prime}\right| \mu^{\prime} \quad \mathrm{t}^{\prime}=\mathrm{t}_{1}^{\prime} \mathrm{t}_{2}$

Case E-App2:
Similar.
Case E-AppABS: $\quad \mathrm{t}=\left(\lambda \mathrm{x}: \mathrm{T}_{11} \cdot \mathrm{t}_{12}\right) \mathrm{v}_{2} \quad \mathrm{t}^{\prime}=\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12} \quad \mu^{\prime}=\mu$

Case E-REF: $\quad \mathrm{t}=\mathrm{ref}_{\mathrm{t}} \quad \mathrm{t}^{\prime}=\operatorname{ref} \mathrm{t}_{1}^{\prime} \quad \mathrm{t}_{1}\left|\mu \rightarrow \mathrm{t}_{1}^{\prime}\right| \mu^{\prime}$ inversion(e), IH, T-REF

Case E-DEREFLOC: $\quad \mathrm{t}=!l \quad \mathrm{t}^{\prime}=\mu(l) \quad \mu^{\prime}=\mu$
Inversion(f), inversion(h)
Case E-DEREF: $\quad!\mathrm{t}_{1}\left|\mu \longrightarrow!\mathrm{t}_{1}^{\prime}\right| \mu^{\prime}$

Case E-Assign: $\quad \mathrm{t}=\mathrm{l}:=\mathrm{v}_{2} \quad \mathrm{t}^{\prime}=\mathrm{unit} \quad \mu^{\prime}=\left[l \mapsto \mathrm{v}_{2}\right] \mu$

Case E-AsSIGN1: $\quad \mathrm{t}=\mathrm{t}_{1}:=\mathrm{t}_{2} \quad \mathrm{t}^{\prime}=\mathrm{t}_{1}^{\prime}:=\mathrm{t}_{2} \quad \mathrm{t}_{1}\left|\mu \rightarrow \mathrm{t}_{1}^{\prime}\right| \mu^{\prime}$

Case E-Assign2:
Similar.

Subtyping

The definition of the simply typed lambda-calculus with records and subtyping is reproduced for your reference on page 17.
6. (11 points) For each type S from the left-hand column below, draw a line connecting it to each type T in the right-hand column such that $S<$: T .

Choices for S:	Choices for T:
\{a: $\}, \mathrm{b}:\{\mathrm{x}:$ Top $\}\}$	$(\} \rightarrow\{\mathrm{a}:$ Top $\}) \rightarrow\}$
Top \rightarrow Top	Top \rightarrow Top
$\} \rightarrow\}$	$\} \rightarrow$ Top
Top	Top \rightarrow \{ $\}$
$(\{a: T o p\} \rightarrow\}) \rightarrow\{\mathrm{b}:$ Top $\}$	\{b:Top\}
\{b:Top \rightarrow Top $\}$	\{b: $\}\}$

7. (12 points) It is easy to show, by induction on subtyping derivations, that

Lemma A: If Top <: T, then $T=$ Top.
A similar, but slightly more interesting, lemma holds for supertypes of arrow types.
Lemma B: If $S_{1} \rightarrow S_{2}<: T$, then either $T=T o p$ or else T has the form $T_{1} \rightarrow T_{2}$, with $T_{1}<: S_{1}$ and $\mathrm{S}_{2}<: \mathrm{T}_{2}$.

Fill in the arguments for the S-Arrow and S-Trans cases of its proof.
Proof: By induction on subtyping derivations. Proceed by a case analysis on the last rule used in the derivation.

Case S-REFL: $\quad \mathrm{T}=\mathrm{S}_{1} \rightarrow \mathrm{~S}_{2}$
T clearly has the required form, with $\mathrm{T}_{1}=\mathrm{S}_{1}$ and $\mathrm{T}_{2}=\mathrm{S}_{2}$. The inclusions $\mathrm{T}_{1}<$: S_{1} and $\mathrm{S}_{2}<$: T_{2} both follow by S-REFL.

Case S-Trans: $\quad \mathrm{S}_{1} \rightarrow \mathrm{~S}_{2}<: \mathrm{U} \quad \mathrm{U}<$: T
Fill in:

Case S-ARROW: $\quad \mathrm{T}=\mathrm{T}_{1} \rightarrow \mathrm{~T}_{2} \quad \mathrm{~T}_{1}<: \mathrm{S}_{1}$ and $\mathrm{S}_{2}<: \mathrm{T}_{2}$
Fill in:

Case S-Top: $\quad \mathrm{T}=$ Top
Immediate.
Case S-RcdWidth, S-RcdDepth, S-RcdPerm, S-Top:
Can't happen: T has the wrong form.
8. (9 points) Suppose we remove rule S-Arrow from the subtype relation. Which of the following properties will remain true? For each one, write either "true" (if it remains true) or else "false" (if it becomes false), plus (in either case) a one-sentence justification of your answer.
(a) Existence of minimal types (if term t is typable in context Γ, then there is some type S such that $\Gamma \vdash \mathrm{t}: \mathrm{S}$ and, for every type T such that $\Gamma \vdash \mathrm{t}: \mathrm{T}$, we have $\mathrm{S}<: \mathrm{T}$)
(b) Progress (if t is a closed, well-typed term, then either t is a value or else $t \rightarrow t^{\prime}$ for some t^{\prime})
(c) Preservation (if t has type T and $\mathrm{t} \rightarrow \mathrm{t}^{\prime}$, then t^{\prime} also has type T)

For reference: Simply typed lambda calculus with Unit

Syntax

t ::			terms
	unit		constant unit
	x		variable
	$\lambda \mathrm{x}: \mathrm{T} . \mathrm{t}$		abstraction
	t t		application
v : $=$			values
	unit		constant unit
	$\lambda \mathrm{x}: \mathrm{T} . \mathrm{t}$		abstraction value
T : $=$			types
	Unit		unit type
	T \rightarrow T		type of functions
Г ::=			contexts
	\varnothing		empty context
	Г, x: ${ }^{\text {T }}$		term variable binding
Evaluation			$t \rightarrow t^{\prime}$
		$\mathrm{t}_{1} \rightarrow \mathrm{t}_{1}^{\prime}$	(E-App1)
		$\mathrm{t}_{1} \mathrm{t}_{2} \rightarrow \mathrm{t}_{1}^{\prime} \mathrm{t}_{2}$	
		$\mathrm{t}_{2} \rightarrow \mathrm{t}_{2}^{\prime}$	(E-App2)
		$\mathrm{v}_{1} \mathrm{t}_{2} \longrightarrow \mathrm{v}_{1} \mathrm{t}_{2}^{\prime}$	
		$\left(\lambda \mathrm{x}: \mathrm{T}_{11} \cdot \mathrm{t}_{12}\right) \mathrm{v}_{2} \longrightarrow\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}$	(E-AppAbS)
Typing			$\Gamma \vdash \mathrm{t}$: T
		$\Gamma \vdash$ unit : Unit	(T-UnIT)
		$\underline{x}: T \in \Gamma$	(T-VAR)
		$\Gamma \vdash \mathrm{x}: \mathrm{T}$	
		$\frac{\Gamma, \mathrm{x}: \mathrm{T}_{1} \vdash \mathrm{t}_{2}: \mathrm{T}_{2}}{\vdash \lambda \mathrm{x}: \mathrm{T}_{1} \cdot \mathrm{t}_{2}: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}}$	(T-ABS)
		$\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}$	(T-APP)
		$\Gamma \vdash \mathrm{t}_{1} \mathrm{t}_{2}: \mathrm{T}_{12}$	

For reference: References

New syntactic forms

$$
\begin{aligned}
\mathrm{t}::= & \ldots \\
& \mathrm{ref} \mathrm{t} \\
& !\mathrm{t} \\
& \mathrm{t}:=\mathrm{t} \\
& l
\end{aligned}
$$

terms

reference creation
dereference assignment store location
values
store location
types
type of reference cells
stores
empty store location binding
store typings
empty store typing location typing

$$
\mathrm{t}\left|\mu \rightarrow \mathrm{t}^{\prime}\right| \mu^{\prime}
$$

$$
\begin{gather*}
\frac{\mathrm{t}_{1}\left|\mu \rightarrow \mathrm{t}_{1}^{\prime}\right| \mu^{\prime}}{\mathrm{t}_{1} \mathrm{t}_{2}\left|\mu \longrightarrow \mathrm{t}_{1}^{\prime} \mathrm{t}_{2}\right| \mu^{\prime}} \\
\frac{\mathrm{t}_{2}\left|\mu \rightarrow \mathrm{t}_{2}^{\prime}\right| \mu^{\prime}}{\mathrm{v}_{1} \mathrm{t}_{2}\left|\mu \rightarrow \mathrm{v}_{1} \mathrm{t}_{2}^{\prime}\right| \mu^{\prime}} \tag{E-APP2}\\
\left(\lambda \mathrm{x}: \mathrm{T}_{11} \cdot \mathrm{t}_{12}\right) \mathrm{v}_{2}\left|\mu \rightarrow\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}\right| \mu \\
\frac{l \notin \operatorname{dom}(\mu)}{\operatorname{ref} \mathrm{v}_{1}|\mu \longrightarrow l|\left(\mu, l \mapsto \mathrm{v}_{1}\right)} \\
\frac{\mathrm{t}_{1}\left|\mu \rightarrow \mathrm{t}_{1}^{\prime}\right| \mu^{\prime}}{\operatorname{ref} \mathrm{t}_{1}\left|\mu \longrightarrow \mathrm{ref}^{\prime} \mathrm{t}_{1}^{\prime}\right| \mu^{\prime}} \\
\frac{\mu(l)=\mathrm{v}}{!l|\mu \rightarrow \mathrm{v}| \mu} \\
\frac{\mathrm{t}_{1}\left|\mu \rightarrow \mathrm{t}_{1}^{\prime}\right| \mu^{\prime}}{!\mathrm{t}_{1}\left|\mu \rightarrow \mathrm{t}_{1}^{\prime}\right| \mu^{\prime}} \\
l:=\mathrm{v}_{2}|\mu \longrightarrow \mathrm{unit}|\left[l \mapsto \mathrm{v}_{2}\right] \mu \\
\frac{\mathrm{t}_{1}\left|\mu \longrightarrow \mathrm{t}_{1}^{\prime}\right| \mu^{\prime}}{\mathrm{t}_{1}:=\mathrm{t}_{2}\left|\mu \longrightarrow \mathrm{t}_{1}^{\prime}:=\mathrm{t}_{2}\right| \mu^{\prime}}
\end{gather*}
$$

(E-APPABS)
(E-REFV)
(E-REF)
(E-DEREFLOC)
(E-DEREF)
(E-AssIGN)
(E-ASSIGN1)

$$
\frac{\mathrm{t}_{2}\left|\mu \longrightarrow \mathrm{t}_{2}^{\prime}\right| \mu^{\prime}}{\mathrm{v}_{1}:=\mathrm{t}_{2}\left|\mu \longrightarrow \mathrm{v}_{1}:=\mathrm{t}_{2}^{\prime}\right| \mu^{\prime}}
$$

$\frac{\Gamma\left|\Sigma \vdash \mathrm{t}_{1}: \operatorname{Ref}_{11} \quad \Gamma\right| \Sigma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}}{\Gamma \mid \Sigma \vdash \mathrm{t}_{1}:=\mathrm{t}_{2}: \text { Unit }}$

For reference: Simply typed lambda calculus with records and subtyping

New syntactic forms
t ::= ...
$\left\{7_{i}=\mathrm{t}_{i}{ }^{i \in 1 . n}\right\}$
t. 1
v ::= ...
$\left\{7_{i}=\mathrm{V}_{i}{ }^{i \in 1 . n}\right\}$
T ::= ...
$\left\{7_{i}: \mathrm{T}_{i}{ }^{i \in 1 . n}\right\}$
Top
terms
record
projection
values record value
types
type of records maximum type

New evaluation rules
$\mathrm{t} \rightarrow \mathrm{t}^{\prime}$
(E-PROJRCD)
(E-ProJ)
(E-RCD)
$\mathrm{S}<\mathrm{T}$
(S-REFL) (S-TRANS)
(S-TOP) (S-ARROW)
(S-RcDWIDTH) (S-RCDDEPTH)
(S-RcDPERM)
$\Gamma \vdash \mathrm{t}: \mathrm{T}$
(T-RCD)
(T-PROJ)
(T-SUB)

