
CIS 500 — Software Foundations

Midterm II

November 13, 2002

Name:

Student ID:

(from your PennCard)

Email

Score

1

2

3

4

5

6

7

8

Total

Instructions

• This is a closed­book exam: you may not make use of any books or notes.

• You have 80 minutes to answer all of the questions. The entire exam is worth 80 points.

• Questions vary significantly in difficulty, and the point value of a given question is not always exactly

proportional to its difficulty. Do not spend too much time on any one question.

• Partial credit will be given. All correct answers are short. The back side of each page may be used as a

scratch pad.

• Good luck!

1

Simply typed lambda­calculus

The definition of the simply typed lambda­calculus with Unit is reproduced on page 15.

1. (8 points) For each of the following untyped λ­terms, either give a well­typed term of the simply typed

lambda­calculus with Unit whose erasure is the given term, or else write “not typable” if no such term

exists.

The type annotations in your answers should only involve Unit and →.

(a) λx. x (x unit)

(b) λx. x unit x

(c) λx. x unit unit

(d) λx. λy. λz. (x y) (y z)

2

References

The definition of the simply typed lambda­calculus with references is reproduced on page 15.

2. (9 points) Suppose, for this question, that our language also has let expressions and numbers. Then

evaluating the expression

let x = ref 5 in

let y = x in

let z = ref (λa:Nat. y := a; succ (!y)) in

(!z) (!y)

beginning in an empty store yields:

Result: 6 Store: l1 , 5

l2 , λa:Nat. l1 := a; succ (!l1)

Fill in the results and final stores (when started with an empty store) of the following terms:

(a) let x = ref 2 in

let y = x in

let f = λa:Ref Nat. λb:Ref Nat. a := 5; b := 6; !a in

f x y

Result: Store:

(b) let x = ref 2 in

let y = ref x in

let z = ref y in

!z

Result: Store:

3

(c) let x = ref 0 in

let f = ref (λu:Unit. !x) in

x := 2;

let g = λu:Unit. (!f) unit in

x := 3;

f := λu:Unit. succ (!x) in

let r = g unit in

x := 9;

r

Result: Store:

4

3. (3 points) Is there any well­typed term that, when started with an empty store, will yield the following

store?

l1 , l1

If so, give one. If not, explain (briefly!) why not.

5

4. (8 points) We saw in homework 8 that, using references, we can achieve the effect of a recursive

function definition by building a “cyclic store” in which the function’s body refers to its own defi­

nition indirectly, via a reference cell. The same idea extends straightforwardly to mutually recursive

definitions.

Fill in the blanks in the following expressions so that, after evaluating them, even will be a function

that checks whether its argument n is even (by returning true if it is 0 and otherwise checking whether

(pred n) is odd).

evenref = ref (λn:Nat.true);

oddref = ref (λn:Nat.true);

evenbody = λn:Nat. if iszero n then true else ((___________)(pred n));

oddbody = λn:Nat. if iszero n then false else ((___________)(pred n));

evenref := __________________;

oddref := __________________;

even = !evenref;

odd = !oddref;

6

5. (20 points) In Chapter 13 of TAPL, the following lemmas were used in proving the preservation prop­

erty for the simply typed lambda­calculus with references. (We’ve given all the lemmas names here,

for easy reference.)

Lemma [Inversion]:

(a) If Γ | Σ ` x : T, then x:T ∈ Γ .

(b) If Γ | Σ ` λx:T1. t2 : T, then T = T1→T2 for some T2 with Γ , x:T1 | Σ ` t2 : T2.

(c) If Γ | Σ ` t1 t2 : T, then there is some type T11 such that Γ | Σ ` t1 : T11→T and Γ | Σ ` t2 :
T11.

(d) If Γ | Σ ` unit : T, then T = Unit.

(e) If Γ | Σ ` ref t1 : T, then T = Ref T1 and Γ | Σ ` t1 ∈ T1.

(f) If Γ | Σ ` !t1 : T, then T = T11 with Γ | Σ ` t1 ∈ Ref T11.

(g) If Γ | Σ ` t1:=t2 : T, then T = Unit and Γ | Σ ` t1 ∈ Ref T11 and Γ | Σ ` t2 : T11.

(h) If Γ | Σ ` l : T, then T = Ref Σ(l).

Lemma [Substitution]: If Γ , x:S | Σ ` t : T and Γ | Σ ` s : S, then Γ | Σ ` [x, s]t : T.

Lemma [Replacement]: If

Γ | Σ ` µ

Σ(l) = T

Γ | Σ ` v : T

then Γ | Σ ` [l , v]µ.

Lemma [Weakening]: If Γ | Σ ` t : T and Σ′ ⊇ Σ, then Γ | Σ′ ` t : T.

For each case in the proof on the next page, write down the skeleton of the argument. A skeleton

contains the same sequence of steps as the full argument, but omits all details. The rules for writing

skeletons are as follows:

• Steps of the form “By part (x) of the inversion lemma, we obtain...” in the full argument become

“inversion(x)” in the skeleton.

• Steps of the form “By the substitution lemma, we obtain...” become “substitution.” (Similarly for

replacement and weakening.)

• Steps of the form “By the induction hypothesis, we obtain...” become “IH.”

• Steps of the form “By typing rule T­XXX, we obtain...” become “T­XXX.”

• If the full argument doesn’t use any of the lemmas or the induction hypothesis, then its skeleton

is “Direct.”

For example, if the full argument is

Case E­DerefLoc: t = !l t′ = µ(l) µ′ = µ

By part (f) of the inversion lemma, T = T11, and Γ | Σ ` l : Ref T11. By part (h) of the

inversion lemma, T11 = Ref Σ(l), i.e., T = T11 = Σ(l). But now, from the assumption that

Γ | Σ ` µ, we can conclude (by the definition of Γ | Σ ` µ) that Γ | Σ ` µ(l) : Σ(l).

the skeleton is written:

Case E­DerefLoc: t = !l t′ = µ(l) µ′ = µ

Inversion(f), inversion(h)

As a second example, the case for E­Ref is also given below.

7

Theorem [Preservation]: If

Γ | Σ ` t : T

Γ | Σ ` µ (i.e., dom(µ) = dom(Σ) and Γ | Σ ` µ(l) : Σ(l) for every l ∈ dom(µ))

t | µ -→ t′ | µ′

then, for some Σ′ ⊇ Σ,

Γ | Σ′ ` t′ : T

Γ | Σ′ ` µ′.

Proof: By induction on evaluation derivations, with a case analysis on the final rule used.

Case E­App1: t = t1 t2 t1| µ -→ t′1| µ
′ t′ = t′1 t2

Case E­App2:

Similar.

Case E­AppAbs: t = (λx:T11.t12) v2 t′ = [x, v2]t12 µ′ = µ

Case E­Ref: t = ref t1 t′ = ref t′1 t1 | µ -→ t′1 | µ
′

inversion(e), IH, T­Ref

Case E­DerefLoc: t = !l t′ = µ(l) µ′ = µ

Inversion(f), inversion(h)

Case E­Deref: !t1 | µ -→ !t′1 | µ
′

Case E­Assign: t = l:=v2 t′ = unit µ′ = [l , v2]µ

Case E­Assign1: t = t1:=t2 t′ = t′1:=t2 t1 | µ -→ t′1 | µ
′

Case E­Assign2:

Similar.

8

Subtyping

The definition of the simply typed lambda­calculus with records and subtyping is reproduced for your

reference on page 17.

6. (11 points) For each type S from the left­hand column below, draw a line connecting it to each type T

in the right­hand column such that S <: T.

Choices for S:

{a:{}, b:{x:Top}}

Top→Top

{}→{}

Top

({a:Top}→{})→{b:Top}

{b:Top→Top}

Choices for T:

({}→{a:Top})→{}

Top→Top

{}→Top

Top→{}

{b:Top}

{b:{}}

9

7. (12 points) It is easy to show, by induction on subtyping derivations, that

Lemma A: If Top <: T, then T = Top.

A similar, but slightly more interesting, lemma holds for supertypes of arrow types.

Lemma B: If S1→S2 <: T, then either T = Top or else T has the form T1→T2, with T1 <: S1 and

S2 <: T2.

Fill in the arguments for the S­Arrow and S­Trans cases of its proof.

Proof: By induction on subtyping derivations. Proceed by a case analysis on the last rule used in

the derivation.

Case S­Refl: T = S1→S2

T clearly has the required form, with T1 = S1 and T2 = S2. The inclusions T1 <: S1 and S2 <: T2

both follow by S­Refl.

Case S­Trans: S1→S2 <: U U <: T

Fill in:

Case S­Arrow: T = T1→T2 T1 <: S1 and S2 <: T2

Fill in:

Case S­Top: T = Top

Immediate.

Case S­RcdWidth, S­RcdDepth, S­RcdPerm, S­Top:

Can’t happen: T has the wrong form.

10

8. (9 points) Suppose we remove rule S­Arrow from the subtype relation. Which of the following prop­

erties will remain true? For each one, write either “true” (if it remains true) or else “false” (if it becomes

false), plus (in either case) a one­sentence justification of your answer.

(a) Existence of minimal types (if term t is typable in context Γ , then there is some type S such that

Γ ` t : S and, for every type T such that Γ ` t : T, we have S <: T)

(b) Progress (if t is a closed, well­typed term, then either t is a value or else t -→ t′ for some t′)

(c) Preservation (if t has type T and t -→ t′, then t′ also has type T)

11

For reference: Simply typed lambda calculus with Unit

Syntax

t ::= terms

unit constant unit

x variable

λx:T.t abstraction

t t application

v ::= values

unit constant unit

λx:T.t abstraction value

T ::= types

Unit unit type

T→T type of functions

Γ ::= contexts

∅ empty context

Γ , x:T term variable binding

Evaluation t -→ t′

t1 -→ t′1

t1 t2 -→ t′1 t2

(E­App1)

t2 -→ t′2

v1 t2 -→ v1 t
′
2

(E­App2)

(λx:T11.t12) v2 -→ [x, v2]t12 (E­AppAbs)

Typing Γ ` t : T

Γ ` unit : Unit (T­Unit)

x:T ∈ Γ

Γ ` x : T
(T­Var)

Γ , x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2

(T­Abs)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T­App)

12

For reference: References

New syntactic forms

t ::= ... terms

ref t reference creation

!t dereference

t:=t assignment

l store location

v ::= ... values

l store location

T ::= ... types

Ref T type of reference cells

µ ::= ... stores

∅ empty store

µ, l = v location binding

Σ ::= ... store typings

∅ empty store typing

Σ, l:T location typing

New evaluation rules t | µ -→ t′ | µ′

t1| µ -→ t′1| µ
′

t1 t2| µ -→ t′1 t2| µ
′

(E­App1)

t2| µ -→ t′2| µ
′

v1 t2| µ -→ v1 t
′
2| µ

′
(E­App2)

(λx:T11.t12) v2| µ -→ [x, v2]t12| µ (E­AppAbs)

l ∉ dom(µ)

ref v1 | µ -→ l | (µ, l , v1)
(E­RefV)

t1 | µ -→ t′1 | µ
′

ref t1 | µ -→ ref t′1 | µ
′

(E­Ref)

µ(l) = v

!l | µ -→ v | µ
(E­DerefLoc)

t1 | µ -→ t′1 | µ
′

!t1 | µ -→ !t′1 | µ
′

(E­Deref)

l:=v2 | µ -→ unit | [l , v2]µ (E­Assign)

t1 | µ -→ t′1 | µ
′

t1:=t2 | µ -→ t′1:=t2 | µ
′

(E­Assign1)

13

t2 | µ -→ t′2 | µ
′

v1:=t2 | µ -→ v1:=t
′
2 | µ

′
(E­Assign2)

New typing rules Γ | Σ ` t : T

Γ | Σ ` unit : Unit (T­Unit)

x:T ∈ Γ

Γ | Σ ` x : T
(T­Var)

Γ , x:T1| Σ ` t2 : T2

Γ | Σ ` λx:T1.t2 : T1→T2

(T­Abs)

Γ | Σ ` t1 : T11→T12 Γ | Σ ` t2 : T11

Γ | Σ ` t1 t2 : T12

(T­App)

Σ(l) = T1

Γ | Σ ` l : Ref T1

(T­Loc)

Γ | Σ ` t1 : T1

Γ | Σ ` ref t1 : Ref T1

(T­Ref)

Γ | Σ ` t1 : Ref T11

Γ | Σ ` !t1 : T11

(T­Deref)

Γ | Σ ` t1 : Ref T11 Γ | Σ ` t2 : T11

Γ | Σ ` t1:=t2 : Unit
(T­Assign)

14

For reference: Simply typed lambda calculus with records and subtyping

New syntactic forms

t ::= ... terms

{li=ti
i∈1..n} record

t.l projection

v ::= ... values

{li=vi
i∈1..n} record value

T ::= ... types

{li:Ti
i∈1..n} type of records

Top maximum type

New evaluation rules t -→ t′

{li=vi
i∈1..n}.lj -→ vj (E­ProjRcd)

t1 -→ t′1

t1.l -→ t′1.l
(E­Proj)

tj -→ t′j

{li=vi
i∈1..j−1,lj=tj,lk=tk

k∈j+1..n}

-→ {li=vi
i∈1..j−1,lj=t

′
j,lk=tk

k∈j+1..n}

(E­Rcd)

New subtyping rules S <: T

S <: S (S­Refl)

S <: U U <: T

S <: T
(S­Trans)

S <: Top (S­Top)

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2

(S­Arrow)

{li:Ti
i∈1..n+k} <: {li:Ti

i∈1..n} (S­RcdWidth)

for each i Si <: Ti

{li:Si
i∈1..n} <: {li:Ti

i∈1..n}
(S­RcdDepth)

{kj:Sj
j∈1..n} is a permutation of {li:Ti

i∈1..n}

{kj:Sj
j∈1..n} <: {li:Ti

i∈1..n}
(S­RcdPerm)

New typing rules Γ ` t : T

for each i Γ ` ti : Ti

Γ ` {li=ti
i∈1..n} : {li:Ti

i∈1..n}
(T­Rcd)

Γ ` t1 : {li:Ti
i∈1..n}

Γ ` t1.lj : Tj
(T­Proj)

Γ ` t : S S <: T

Γ ` t : T
(T­Sub)

15

