CIS 500 — Software Foundations
Midterm II

November 13, 2002

Name:

Student ID:

(from your PennCard)

Email

Score

(N[|k |wW | N

Total

Instructions

This is a closed-book exam: you may not make use of any books or notes.
You have 80 minutes to answer all of the questions. The entire exam is worth 80 points.

Questions vary significantly in difficulty, and the point value of a given question is not always exactly
proportional to its difficulty. Do not spend too much time on any one question.

Partial credit will be given. All correct answers are short. The back side of each page may be used as a
scratch pad.

Good luck!

Simply typed lambda-calculus

The definition of the simply typed lambda-calculus with Unit is reproduced on page 15.

1. (8 points) For each of the following untyped A-terms, either give a well-typed term of the simply typed
lambda-calculus with Unit whose erasure is the given term, or else write “not typable” if no such term
exists.

The type annotations in your answers should only involve Unit and —.

(@) Ax. x (xunit)

(b) AX. X unit x

(c) AX. xunitunit

(d) Ax. Ay. Az. (xy) (y 2)

References

The definition of the simply typed lambda-calculus with references is reproduced on page 15.

. (9 points) Suppose, for this question, that our language also has Tet expressions and numbers. Then
evaluating the expression

Tet x = ref 5 1in

let y = x 1in

let z = ref (Aa:Nat. y := a; succ (ly)) in
('z) (ty)

beginning in an empty store yields:

Result: 6 Store: I, — 5
I —» Aa:Nat. I} :=a; succ (!I})

Fill in the results and final stores (when started with an empty store) of the following terms:

(@ let x = ref 2 1in
let y = x 1in
let f = Aa:Ref Nat. Ab:Ref Nat. a := 5; b := 6; !a in
fxy
Result: Store:
(b) et x = ref 2 1in
let y = ref x 1in
let z = ref y 1in
1z
Result: Store:

(0)

let x = ref 0 1in

let f = ref (Au:Unit. !x) in
X 1= 2;

let g = Au:Unit. (!f) unit in

f := Au:Unit. succ (!x) in

let r = g unit 1in
X 1= 9;

Result: Store:

3. (3 points) Is there any well-typed term that, when started with an empty store, will yield the following
store?

L -1

If so, give one. If not, explain (briefly!) why not.

4. (8 points) We saw in homework 8 that, using references, we can achieve the effect of a recursive
function definition by building a “cyclic store” in which the function’s body refers to its own defi-
nition indirectly, via a reference cell. The same idea extends straightforwardly to mutually recursive
definitions.

Fill in the blanks in the following expressions so that, after evaluating them, even will be a function
that checks whether its argument n is even (by returning true if it is 0 and otherwise checking whether
(pred n) is odd).

even,s = ref (An:Nat.true);
odd,er = ref (An:Nat.true);

evenpedy = An:Nat. if iszero n then true else (()(pred n));
oddpoay = An:Nat. if iszero n then false else (()(pred n));
eveNy = ;

oddyer := ;

even = leven,.;

odd = lodd,.f;

5. (20 points) In Chapter 13 of TAPL, the following lemmas were used in proving the preservation prop-
erty for the simply typed lambda-calculus with references. (We've given all the lemmas names here,

for easy reference.)

LEMMA [INVERSION]:

(@ T |2+ x : T, then x:T €T.

(b) T | X+ AXx:T;. t2 - T,then T =T;—-T, for some To with T, x:T; | X+ to : To.

(c) fT | X+ t; t2 : T, then there is some type T;; such thatT | X+ t; : T —=TandT |2+ tp :
T11.

(d) fT|Z+unit : T, thenT=Unit.

(e) fT|Xr+reft; : T,thenT=RefTyand I | =+ t; € T;.

) T+t : T,thenT=Ty; withT | 2+ t; € Ref Ty;.

(g UT | Z+ti:=tp : T,thenT=Unitand ' | X+ t; € Ref Ty andT |+ t2 & Tqg.

() T |Z+1: T, thenT = Ref X(I).

LEMMA [SUBSTITUTION]: If I', x:S | X+t : TandT' | X+ s : S,thenT |3+ [x —s]t : T.

LEMMA [REPLACEMENT]: If

I X+u
SH=T
rv:T

thenT | X+ [l -~ v]pu.

LEMMA [WEAKENING|: IfT |2+t : Tand > 23, thenT | X' -t : T.

For each case in the proof on the next page, write down the skeleton of the argument. A skeleton
contains the same sequence of steps as the full argument, but omits all details. The rules for writing
skeletons are as follows:

Steps of the form “By part (x) of the inversion lemma, we obtain...” in the full argument become
“inversion(x)” in the skeleton.

Steps of the form “By the substitution lemma, we obtain...” become “substitution.” (Similarly for
replacement and weakening.)

Steps of the form “By the induction hypothesis, we obtain...” become “IH.”

Steps of the form “By typing rule T-XXX, we obtain...” become “T-XXX.”

If the full argument doesn’t use any of the lemmas or the induction hypothesis, then its skeleton
is “Direct.”

For example, if the full argument is

Case E-DEREFLOC: =11 t' = pu) U =u

By part (f) of the inversion lemma, T = Ty, and T | X ~ [: Ref T;;. By part (h) of the
inversion lemma, T;; = Ref X(I), i.e.,, T = T;; = 3(I). But now, from the assumption that
I' | X+ u, we can conclude (by the definition of T' | X + p) thatT' | X + u(l) @ X(1).

the skeleton is written:

’

Case E-DEREFLOC: =11 t' = u(l) U =u
Inversion(f), inversion(h)

As a second example, the case for E-REF is also given below.

THEOREM [PRESERVATION]: If
r-t:T
I X+u (i.e., dom(u) = dom(Z) and T | X+ u(l) : (1) for every I € dom(u))
tluy—t |y
then, for some >’ 2 3,
Mt T
vy
Proof: By induction on evaluation derivations, with a case analysis on the final rule used.

Case E-APP1: t=1t; t tlu— tyl t'=1t] t2

Case E-ApPP2:

Similar.

Case E-APPABS: t = (Ax:Tq11.t12) V2 t' =[x+~ volti2 u =u

Case E-REF: t=reft; t' =reft] t lpy—t) Iy
inversion(e), IH, T-REF

Case E-DEREFLOC: t=1I] t'=u) u=u
Inversion(f), inversion(h)

Case E-DEREF: !t |y — !t] |

Case E-ASSIGN: t=1:=v» t' =unit u =[l~valu

Case E-ASSIGN1: t =t;:=t> t'=1t]:=t tlpuy—t) Iy

Case E-ASSIGN2:

Similar.

Subtyping
The definition of the simply typed lambda-calculus with records and subtyping is reproduced for your

reference on page 17.

6. (11 points) For each type S from the left-hand column below, draw a line connecting it to each type T
in the right-hand column such that S <t T.

Choices for S: Choices for T:
{fa:{}, b:{x:Top}} ({}—{a:Top})—{}
Top—Top Top—Top

{31-{3 {}-Top

Top Top—{}
({a:Top}—{})—{b:Top} {b:Top}
{b:Top—Top} {b:{}}

7. (12 points) It is easy to show, by induction on subtyping derivations, that
LEMMA A: If Top <: T, then T = Top.
A similar, but slightly more interesting, lemma holds for supertypes of arrow types.

LEMMA B: If S;—Sy <! T, then either T = Top or else T has the form T;—T,, with T; < S; and
Sy < To.

Fill in the arguments for the S-ARROW and S-TRANS cases of its proof.
Proof: By induction on subtyping derivations. Proceed by a case analysis on the last rule used in
the derivation.
Case S-REFL: T=51-S;

T clearly has the required form, with T; = S; and T, = S,. The inclusions T; < S; and S, <! T»
both follow by S-REFL.

Case S-TRANS: S;1—S> <: U u<:T
Fill in:

Case S-ARROW: T=T;-T» Ti<:S;and Sy <t Ty
Fill in:

Case S-Top: T=Top
Immediate.

Case S-RCDWIDTH, S-RCDDEPTH, S-RCDPERM, S-TOP:
Can’t happen: T has the wrong form.

10

8. (9 points) Suppose we remove rule S-ARROW from the subtype relation. Which of the following prop-
erties will remain true? For each one, write either “true” (if it remains true) or else “false” (if it becomes
false), plus (in either case) a one-sentence justification of your answer.

(a) Existence of minimal types (if term t is typable in context I', then there is some type S such that
I'-t :Sand, for every type Tsuch thatT' - t : T, we have S<: T)

(b) Progress (if t is a closed, well-typed term, then either t is a value or else t — t’ for some t’)

(c) Preservation (if t has type T and t — t’, then t’ also has type T)

11

For reference: Simply typed lambda calculus with Unit

Syntax
t o= terms
unit constant unit
X variable
Ax:T.t abstraction
tt application
\VARRES values
unit constant unit
Ax:T.t abstraction value
T = types
Unit unit type
T-T type of functions
I = contexts
%] empty context
I,x:T term variable binding
Evaluation t—t
t; — t]
- (E-ApP1)
tit — 14 2
t) — t
2 . (E-ApPP2)
vith —vi t
(AX:T11.t12) Vo — [X = Vo]t (E-APPABS)
Typing
I'unit:Unit (T-UNIT)
x:Tel
(T-VAR)
'-x:T
I[x:Ti -t 1T
(T-ABS)
I'Ax:T1.t2 : T1—-T>
't : T11—-To2 =t 1 T11
(T-Aprp)

I'-t)t2: T2

12

For reference: References

New syntactic forms

t = .. terms
ref t reference creation
It dereference
t:=t assignment
1 store location
v o= values
1 store location
T == .. types
Ref T type of reference cells
u = .. stores
%) empty store
u,l=v location binding
S on= .. store typings
%] empty store typing
1T location typing
New evaluation rules tlu—t |y
tilp—
S L (E-APP1)
ty to|l g — ty tol p
tolpu — ol
- T (E-AppP2)
vitol g —vityl p
(Ax:Tir.t12) vol g — [x = valtizl p (E-APPABS)
1 ¢ dom(u)
(E-REFV)
refvy|u—1]|l~vy)
tlpy—t
! ! R (E-REF)
reft; |u— reft]|u
u) =v
_ (E-DEREFLOC)
Hlpu—vlp
t | N t/ ‘ ’
LK 1, H - (E-DEREF)
Mty — 1ty |
li=vo | u — unit | [l ~ vo]u (E-ASSIGN)
t | N t/ ‘ r
LK 1 H (E-ASSIGN1)

tii=te | p— thi=te [y

13

tly—t, |y
vii=ty | — vyi=ts |

New typing rules
I'N'X+~unit:Unit
x:Tel
IN-x:T

[Lx:T1| 2+ttt To
IN2FAX:T1.t2 : T1 =T

I+t : Tii—~To2 I3+t

rTh

T2+t t2: Ti2

(=T
I'|X+1:RefT

It : T
I'X+reft;:RefTy

I>+t; : RefTy;
r+1t; : T

N+ t; : RefTy1 r+t

Tt

I'ZFti:=t2 : Unit

14

(E-ASSIGN?2)

[M-t:T

(T-UNIT)

(T-VAR)
(T-ABS)
(T-App)
(T-Loc)
(T-REF)
(T-DEREF)

(T-ASSIGN)

For reference: Simply typed lambda calculus with records and subtyping

New syntactic forms
t o= ..
{1;=t; i€}

t.1
v o= oL
{1;=v; <tn}
T == ..
{1;:T;tn}
Top

New evaluation rules

New subtyping rules

New typing rules

terms
record
projection

values
record value

types
type of records
maximum type

{1;=v; €}, 1] —Vj (E-PROJRCD)

t] — t]
. (E-PrOJ)
tl .1 - tl .1
tj — t]
/ J (E-RCD)

{1j=v; St -|j=tj , Te=tg kein}
— L=y Tt Tty

S<:S (S-REFL)
S<: U u<: T
s<tU U<«T (S-TRANS)
S<: T
s <: Top (S-Top)
TI<IS1 Se<iT (S-ARROW)

S1—So <t T1—-To
{01y stk <o {42y <0} (S-RCDWIDTH)

foreachi S;<: T;
{'li . Si iel..n} <: {-Il :Ti iel..n}

(S-RCDDEPTH)

{k;:S;/<""} is a permutation of {1;:T; <"}

(S-RCDPERM)

{k] : S] jel..n} <: {-ll :Ti iel..n}

foreachi T'+t; : T;

T-RcD
T+~ {-Ii=ti iel..n} . {-ll :Ti iel..n} ()
Tty f {170
1 { i i } (T—PROJ)
't .-|j . Tj
I'=t:S S<IT
(T-SuB)

r=t:T

15

