
A LATEX Tutorial

Jim Alexander∗

September 5, 2002

1 Some History

• TEX developed by Donald Knuth in 1977

• Pronounced /t�k/ because it comes from the Greek word τεχνη – ‘art’

• Leslie Lamport developed LATEX in the early 80’s on top of TEX to make it easier to use

• LATEX fragmented into several dialects over the years; LATEX 2ε attempts unify these dialects as well
as providing some new functionality. This document only covers the 2ε version of the language.

2 Setup

The default LATEX commands provided on Eniac and some other systems here at Penn are version 2.09, not 2ε.
To get the newer LATEX commands, you will need to modify your path so that the directory /pkg/teTeX/bin
appears prior to /pkg/bin, /usr/local/bin and /usr/bin/X11. What you have to do to make this happen
depends on the identity of your shell and the current state of your shell initialization files. If you need help
doing this, please ask for it.

The CIS graduate student machine gradient appears to now have version 2ε, so changing your path
shouldn’t be necessary.

If you would like to set up LATEX for your own machine running a UNIX-like operating system, look for
binary distributions of tetex – most Linux distributions have it on their CDs. Installing it from sources is
nontrivial. For Windows, look for a distribution called TEX Live (I do not run Windows, though, so can’t
really help you with this).

There are various front-ends available to make interacting with LATEX more like a word processor (a very
nice one for UNIX is called LyX). This tutorial has nothing more to say about such systems, however: it is
intended to get you started with writing in LATEX directly.

3 The System

• The content of your document is placed in a file ending in the extension ‘.tex’. The command latex
is run on the resulting file with the file name as an argument. Several output files are produced (refer
to Figure 1):

– mypaper.tex

your input file
∗Inspired (some bits swiped verbatim) from a similar introduction given at UC Santa Cruz by Kevin Karplus, Phokion

Kolaitis and Richard Hughey.

1

– mypaper.dvi

device independent file – this is the compiled version of your input. It contains the position and
style of everything in your document and is converted with another program into the language of
the final target file type, e.g. the printer language Postscript.

– mypaper.log

detailed processing information and error messages from the LATEX compiler

– mypaper.aux
contains cross referencing information for labeled items and bibliography references

• The device independent or dvi file is converted to whatever final output format you want with other
programs. The converters that you want to know about are:

– xdvi

a command for displaying the content of a dvi file in the X windowing system

– dvips

a command for converting the dvi file to postscript

∗ dvips -Pprintername mypaper.dvi
to send your file to the printer with name printername

∗ dvips mypaper.dvi -o output.ps
put the postscript output into the file output.ps (if the filename argument is omitted, the
output will be written to mypaper.ps, i.e. the same base filename as your original input file
with the ‘.ps’ extension). The result may be sent to a printer with the lpr command or may
be viewed at an X terminal with the ghostview command.

• A new alternative to the latex command, pdflatex, is available to produce typeset output in Adobe’s
PDF format directly, bypassing the conversion to dvi and postscript. If you are writing a new document
and the final product you want is PDF format anyway, then you should consider just using pdflatex
from the beginning – just substitute pdflatex wherever latex occurs in the rest of this document.
There are a few gotchas related to using pdflatex with graphics, however; these are mentioned briefly
in Appendix A.

• The bibtex command takes a bib file and formats bibliography entries in the style you specify in your
input file as well as resolving citations. More on this in section 7.

4 LATEX Commands: The Basics

• The upper- and lowercase letters, the digits, and the following punctuation characters:

. : ; , ? ! ‘ ’ () [] - / * @

can appear in your input file and are typeset (more or less) verbatim.

• Sentences are entered by just typing them in your favorite editor. Whitespace characters (spaces, tabs
and newlines) are ignored - LATEX will decide how to space your text appropriately. Paragraph breaks
are represented by a line consisting of nothing but whitespace (typically just an empty line).

• These characters are used by LATEX commands:

$ % & ~ _ ^ \ { }

2

LATEX

mypaper.tex

System
Files

mypaper.aux

mypaper.dvi

preview
on

screen

printer

mypaper.log

xdvi dvips . . .

mypaper.bbl BIBTEX

mm.bib

Figure 1: The LATEX System

If you want them to appear in your text, most of these can be produced by prefixing them with a
backslash, e.g. \$ gets you $.

• Most commands begin with a backslash \ followed by the name of the command. If any arguments are
required, they are enclosed in curly braces. Optional arguments are enclosed in square brackets before
any of the required arguments. We’ll see examples of the commands that specify the basic structure
of your document in the next section.

• LATEX is more like a programming language than a word processor, and as is advisable with any
programming project, you should write you document incrementally. That is, save your file and run
it through the latex command frequently, and probably view the result with xdvi. It is far easier to
figure out how to fix problems if there are only a few of them.

5 Basic Document Structure

• Your document begins with the command:

\documentclass[options]{classname}

The standard document classes are article, book, report, letter, and slides. You will almost
always use the article class.

Options commonly used include:

3

– 10pt, 11pt, or 12pt
Specifies the default type size of your document. The default is 10pt if not specified otherwise.

– onecolumn or twocolumn
Specifies one or two column formatting. One column is the default.

– notitlepage or titlepage
Generate a separate page each for the title and the abstract if the titlepage option is specified.
The notitlepage places the title and abstract on the same page. The article class defaults to
notitlepage.

– leqno

Places equation numbers on the left side (rather than the right).

• The body of your document is enclosed as follows:

\begin{document}

text of your document

\end{document}

• Everything between the \documentclass and \begin{document} commands is called the preamble. In
this section of the document, you place declarations that affect the whole document. Here’s one useful
such declaration that gives you empty headers and footers (without, e.g., page numbers):

\pagestyle{empty}

You also load packages in the preamble. Packages contain commands that are not in the base language
(e.g. for drawing, including and manipulating graphics files, etc.) or that redefine some of the behaviour
of the base commands. You load a package with the \usepackage command. Here’s an example with
a package I use regularly:

\usepackage{fullpage}

The fullpage package uses much smaller margins than the default page formatting (which gives you
margins suitable for binding).

More packages will be mentioned in the next section.

6 Beyond the Basics

6.1 Some Niggly Details

• As is conventional in typeset documents, a period coming at the end of a sentence has a bit of extra
space. TEX thinks that a period is the end of a sentence unless it follows an uppercase letter. You
have to fix cases where this heuristic fails if you want your spacing to be perfect:

– For abbreviations, put a \Ã (backslash-space) right after the period.

– If your sentence really ends in a capital letter, put the \@ command immediately before the period.

4

The spacing heuristic (and these workarounds) also work for ?, ! and :.

Ellipsis (. . .) should be done with the command \ldots – just using a sequence of periods will give
you really strange spacing.

• If you don’t want a new paragraph indentation after you have a line in whitespace in your source file,
start the line with \noindent.

• Sometime linebreaks will occur in bad places: in the name of table reference like Table 7, for instance.
You can tell LATEX to not split a line at a particular word break by replacing the space with a tilde
(~). The tilde produces a normal space, but prevents a line break.

LATEX also defaults to full justification, and it will hyphenate where necessary to avoid having a line
that looks too sparse. You can force LATEX to not hyphenate a particular word by putting it inside
an \mbox command, e.g., \mbox{Pennsylvania}. The \mbox command has many other uses, one of
which will be mentioned in conjunction with math mode, below.

• If you want to insert a linebreak, use the \\ command.

• Sometimes pagebreaks will appear in bad places as well. If you have a line or two at the end of a
page, for instance, that you really would rather appear at the top of the next page, you can force a
page break with the \clearpage command. This will, of course, leave extra whitespace at the bottom
of a page. Also, you are strongly advised not to fuss with such spacing issues until your document is
otherwise complete, otherwise you might have to do it all again if you insert more text somewhere.

• The open quote mark is made with the backtick ‘ and the close is made with a single quote ’. Double
or “scare” quotes are made with two of the individual quote marks in a row: ‘‘scare’’. The double
quote character " itself is pretty much never used.

• The comment character is % - anything following one is ignored. Use \% to get a literal %.

6.2 Font Sizes and Styles

In section 5, we saw how to set the base font size for your document. What if you want to deviate from this
size? You choose one of the declarations listed below, and you get a size relative to your default size, which
you get back with the \normalsize declaration.

\tiny stuff

\scriptsize stuff

\footnotesize stuff

\small stuff

\normalsize stuff
\large stuff
\Large stuff
\LARGE stuff
\huge stuff
\Huge stuff

Once you make a size declaration within a given declaration scope, it remains in effect until you change
it to something else. The scope of the declaration is normally the whole document, but you can change the
scope by placing the declaration and the text you want it to affect inside of curly braces. These two ways of
doing it are shown below:

5

\scriptsize
smallish
\normalsize

normal

{\large largish}

smallish

normal
largish

Choosing a text style can also be done with a declaration, but a command is also available. I’ll only
illustrate the command form (since that’s what I always use), but I’ll list the equivalent declaration if you
want to use it:

Command Style Declaration
\textup{Upright (default)} Upright (default) \upshape
\textit{Italic} Italic \itshape
\textsl{Slant} Slant \slshape
\textsc{Small Caps} Small Caps \scshape
\textmd{Medium (default)} Medium (default) \mdseries
\textbf{Bold} Bold \bfseries
\textrm{Roman} Roman \rmfamily
\textsf{Sans serif} Sans serif \sffamily
\texttt{Typewriter} Typewriter \ttfamily

Most of these commands can be combined in the obvious way to get more complicated styles (but note
it is possible that your system might not have fonts to match each every combination you might want).

LATEX also provides a command \emph for when you want to emphasize a piece of text - this translates
to italics, by default, for postscipt output.

6.3 Spacing

To insert some horizontal or vertical space, you can use the \hspace{length} or the \vspace{length} com-
mands, respectively. The length may be specified as a decimal number with units in inches in, millimeters
mm, centimeters cm or points pt. There are also units that depend on the current font an style: em, the width
taken up by an “M” and ex, the space taken up by an “x”.

These commands really shouldn’t be used to align chunks of text; use a table (discussed below) or a
tabbing environment (not covered in this tutorial) if at all possible.

Another useful command is \hfill, which is shorthand for \hspace{\fill}. This gives you an example
of a rubber length: a length that has some natural length, but will take up all of the space in its domain if
it can. \hfill has a natural length of 0, but will take up all of the extra space in a line if it can. This is
one way of right-justifying a line of text:

\hfill The edge

gives:
The edge

If you have more than one \hfill in a line, they will split the space evenly, like so (note the use of
\noindent):

\noindent 1 \hfill 2 \hfill 3

1 2 3
Finally, to center something on the page, simply enclose it between \begin{center} and \end{center}.

6

6.4 Titles

To specify title information, you make two or three declarations with the \title, \author, and (optional)
\date commands. The declaration used for this handout are:

\title
{
A \LaTeX\ Tutorial
}
\author
{
Jim Alexander\thanks{Inspired (some bits swiped verbatim) from a similar
introduction given at UC Santa Cruz by Kevin Karplus, Phokion Kolaitis and
Richard Hughey.}
}

To generate the actual title, you put the command \maketitle as the first command in the body of your
document. The declarations can appear anywhere before the \maketitle command; I usually put them in
the preamble. Some comments:

• Note that I have not made the \date declaration. If you do not, the result of the \today command is
used, which gives you the current date.

• Note also the use of the \thanks command – this generates a footnote in the title suitable for such
things as funding acknowledgements.

• Separate multiple authors with the \and command.

• If you want to have multi-line entries for each author, e.g. if you to show their affillation, use \\ to
separate the lines.

The text between the commands \begin{abstract} and \end{abstract} typesets an abstract wherever
you place the commands (typically right after \maketitle).

6.5 Sectioning

You can see examples of sectioning commands in action throughout this handout – the title of this subsection
(6.5) was created with the \subsection command (note the \label command as well; this is covered in the
next section):

\subsection{Sectioning\label{subsec:sectioning}}

Major sections are created analogously with the \section command. The book document class also has
a \chapter sectioning command, and there are a few others, more rarely used.

6.6 Labeling and References

If you want to refer to some numbered entity in your text, it is best to use the \label and \ref commands
rather than explicitly typing a number. This way, LATEX can keep track of the numbering automatically – if
you insert new numbered material, you don’t have to do renumbering by hand. The argument to the \label
command can be any string. As you might see from my usage of the labeling command in subsection 6.5,
I usually make my labels in two parts, separated by a colon. The first part is the type of the entity being
labeled, in this case a subsection (other types I use often are fig for a figure and dat for a piece of data).
The second part is some name that evokes the specific labeled entity for me, in this case this is sectioning.

You then reference the labeled entity with the same string you used to label it. For example, I have been
using the command \ref{subsec:sectioning} to get the number of the previous section as I have referred
to it in my text.

When you first insert a new reference and then run latex on your file, you will probably get a warning
that looks like this:

7

LaTeX Warning: Reference ‘subsec:sectioning’ on page 5 undefined on input line
440.

[5] [6] [7] (latex-tut.aux)

LaTeX Warning: There were undefined references.

LaTeX Warning: Label(s) may have changed. Rerun to get cross-references right.

Just do as LATEX says and rerun your compilation command. On the first pass, LATEX writes out all of your
references abstractly to the file that ends in the extention .aux. On the second pass, it assigns the actual
numbers. This will also happen with bibliographical citations.

6.7 Footnotes

To insert a footnote, simply insert a \footnote{Text of footnote} command exactly where you want a
footnote to appear1. Footnote indices are tracked automatically like the labels described in the previous
section.

6.8 Lists

Throughout this document, I have made use of the itemize environment to produce bulleted lists. Here’s
another example:

• Foo

• Bar

• Baz

. . . which was produced like so:

\begin{itemize}
\item Foo
\item Bar
\item Baz
\end{itemize}

To make numbered lists, use the enumerate environment:

1. First

2. Second

(a) Sub-first

(b) Sub-second

3. Third

\begin{enumerate}
\item First
\item Second
\begin{enumerate}
\item Sub-first
1Like right here

8

\item Sub-second
\end{enumerate}

\item Third
\end{enumerate}

Note that as shown in the above example (and used extensively throughout this handout) itemize and
enumerate environments may be nested. Nested environments are indented and the style of the bullet or
number is varied2.

In the base version of the enumerate environment, you don’t have easy control over the style of the
numbers of your list items. There is a enhanced version of enumerate that gives you precisely this control.
To use it, put \usepackage{enumerate} in your document preamble. Then, in square brackets after the
\begin{enumerate} command, you give an example of the style you want by showing what the first number
in your list should look like. The possible styles of numbers are upper and lower case versions of Roman
numerals or letters, or Latin numerals, and the digits can be “decorated” however you like. Here’s an
example:

I. First

II. Second

-a- Sub-first

-b- Sub-second

III. Third

Statement 1 = True

Statement 2 = False

Statement 3 = False

\begin{enumerate}[I.]
\item First
\item Second
\begin{enumerate}[-a-]
\item Sub-first
\item Sub-second
\end{enumerate}

\item Third
\begin{enumerate}[{Statement} 1 =]
\item True
\item False
\item False
\end{enumerate}

\end{enumerate}

6.9 Math Mode

LATEX’s capabilities in the typesetting of mathematical formulas is virtually unmatched. Covering math
mode in depth, however, could easily comprise several more tutorials on its own, so I’ll only say a few things
about the basics. To do serious math typesetting, you will absolutely need a good reference book (see section
8).

An inline mathematical formula is enclosed in dollar signs $. . . $; a formula enclosed in \[. . . \] appears
on its own line (this is called a displayed formula). The environment \begin{equation} . . . \end{equation}

2Note also that I have indented the nested enumerate environment, mimicing the output. This enhances the readability of
your raw input file.

9

typesets just like a displayed formula, but also includes an equation number generated from the equation
counter, which is managed by LATEX automatically. A simple example:

y = mx + b (1)

Spaces have no effect on how formulas are typeset; LATEX will decide for itself how symbols should be
grouped. If you want a piece of text inside of a formula to behave as in the normal text mode (called “LR
mode,” as it happens), put that text inside an \mbox command.

Text mode font styles do not work in math mode; there are equivalents for many of them available,
though. See below. Math mode symbols are normally typeset in an italic shape, but the spacing is different
than for the \mathit shown below; use the below font styles for multiletter symbols you want in a different
style.

\mathit{Italic} Italic
\mathrm{Roman} Roman
\mathbf{Bold} Bold
\mathsf{Sans\ serif} Sans serif
\mathtt{Typewriter} Typewriter
\mathcal{CALLIGRAPHIC} CALLIGRAPHIC

For the remainder of this section, I’ll go over some of the more heavily used math mode commands.

• The arithmetic operators +, − and / do the expected thing in math mode. \div gives the division
operator ÷ and explicit multiplication operations can be symbolized with \cdot→ · or \times→ ×.

• The caret ^ superscripts the expression following it to the expression preceding it. The underscore _
subscripts.

Superscripting and subscripting may be mixed as shown in x2x+1
4 , which was made with the command

x_{4}^{2x+1}. The order that you super- or subscript most often doesn’t matter.

It’s a good habit to put the sub- or superscripted expression inside curly braces or your expression
might get grouped in unexpected ways.

• The Greek alphabet is obtained by command named after the characters’ names, e.g. \pi→ π and
\delta→ δ. Capital Greek letters are obtained by capitalizing the first letter of the name, e.g. \Omega→
Ω.

• Fractional expressions in running text are usually made with the slash /, e.g. 1/2→ 1/2. Complicated
fractions (which are usually displayed) can be made with the \frac command, which takes two options:
the numerator and the denominator. Here’s an example (note that it can be used recursively):

\[\frac{\alpha + z’}{1 + \frac{n}{17\rho}} \]

α + z′

1 + n
17ρ

Fractional expressions are used heavily in programming language theory to typeset inference rules. For
example, here is the conditional inference rule from chapter 3 of your text (the actual font used in the
text is slightly different):

t1 ∈ T t2 ∈ T t3 ∈ T
if t1 then t2 else t3 ∈ T

This was typeset with the following command:

10

\[\frac{t_1 \in \mathcal{T} \ \ \ t_2 \in \mathcal{T} \ \ \ t_3 \in \mathcal{T}}
{\mathrm{if} \ t_1 \ \mathrm{then} \ t_2 \ \mathrm {else} \ t_3
\in \mathcal {T}} \]

The backslash-space command is used to insert space where math mode would normally have none, just
to make the overall result look a little neater. If one were typesetting a lot of expression that looked
like this, one would write a custom command to avoid needless repetition, as is a good idea in any
programming language. Doing this is well beyond the scope of this introduction however – interested
readers should refer to discussion of \newcommand in a more comprehensive reference on LATEX (see
section 8).

• Summations can be typeset with the \sum command. You specify the bounds of the summation with
the super- and subscript commands, and LATEX will move them to the right place. An example:

\[\sum_{i=0}^{n} \frac{1}{i^2} \]

n∑

i=0

1
i2

The same command inline looks like this:
∑n

i=0
1
i2 . If you want the display style of summation in your

inline formula, simply include the command \displaystyle before the \sum command in the formula.

Products, unions, integrals, etc., are done with the \prod, \bigcup, \int, etc., which otherwise have
the same command syntax.

6.10 Tables

The standard LATEX table-making environment, tabular, is very powerful. As is the case throughout this
tutorial, this section covers the basics.

The body of the table is surrounded by \begin{tabular} and \end{tabular}. The \begin{tabular}
command has a required parameter which is a string specifying how the columns of your table should be
laid out. The column specifiers you will use most often are:

l a left-aligned column
r a right-aligned column
c a centered column
| a vertical line running the full length of the table

Let’s see an example of a simple table without any lines:

\begin{tabular}{lc}
foo & bar \\
junk & stuff
\end{tabular}

foo bar
blah defenestration
junk stuff

Note that cells in a given row are separated with ampersands & and all of the rows but the last are
terminated with \\.

If we add lines to the table, we generally want to draw a box around the whole table as well. Here’s the
same example with many more lines than you would probably want:

11

\begin{tabular}{|l|c|} \hline
foo & bar \\ \hline
blah & defenestration \\ \hline
junk & stuff \\ \hline
\end{tabular}

foo bar
blah defenestration
junk stuff

The vertical lines are part of the column specification string (the | character), including the outside edges
of the table. The \hline command places horizontal lines wherever you want them. To make the top of the
box surrounding the table, you put an \hline command before the first row of your table. As you can see,
I usually put it on the same line and \begin{tabular}. The bottom line goes at the end of the last row of
the table. Note that in this case, there is also a \\ on that last line – this is the only time the \\ should
appear on the last row.

One way you might want to make a table more complicated is to have subcolumns within columns, like
in this table from one of my Phonology papers:

Front Back
Height -Round +Round -Round +Round

short long short long long short long
High i /i/ ı́ /iq/ ü /y/ ű /yq/ u /u/ ú /uq/
Mid é /eq/ ö /ø/ ő /øq/ o /o/ ó /oq/
Low e /�/ á /�q/ a /=/

This is accomplished with the \multicolumn command, which I am not going to say anything else about
beyond providing the source for this table. My LATEX books had poor examples when it came to learning
how this command works, and hopefully you can refer to my example to help you figure it out when you
need to. Here’s the source:

\begin{tabular}{|l||c|c|c|c||c|c|c|} \hline
% the top line of the headings
\multicolumn{1}{|c||}{} &
\multicolumn{4}{c||}{Front} &
\multicolumn{3}{c|}{Back} \\ \cline{2-8}

% the middle line of the headings
\multicolumn{1}{|c||}{Height} &
\multicolumn{2}{c|}{-\textsc{Round}} &
\multicolumn{2}{c||}{+\textsc{Round}} &
\multicolumn{1}{c|}{-\textsc{Round}} &
\multicolumn{2}{c|}{+\textsc{Round}} \\ \cline{2-8}

% the bottom line of the headings
\multicolumn{1}{|c||}{} &
\multicolumn{1}{c|}{short} &
\multicolumn{1}{c|}{long} &
\multicolumn{1}{c|}{short} &
\multicolumn{1}{c||}{long} &
\multicolumn{1}{c|}{long} &
\multicolumn{1}{c|}{short} &
\multicolumn{1}{c|}{long} \\ \hline

12

% the body of the table - the details of this aren’t important
\textsc{High} & i /i/ & \’{\i} /i{\length}/ & \"{u} /y/ &
\H{u} /y{\length}/ & & u /u/ & \’{u} /u{\length}/ \\

\textsc{Mid} & & \’{e} /e{\length}/ & \"{o} /\o/&
\H{o} /\o{\length}/& & o /o/ & \’{o} /o{\length}/ \\

\textsc{Low} & e /\niepsilon/ & & &
& \’{a} /\scripta{\length}/ & a /\openo/ & \\ \hline

\end{tabular}

If you want to have a table that consists entirely of equations, use the array environment instead of
tabular. It works pretty much the same as tabular except every item is typeset in math mode - this saves
you from enclosing every item in your table between dollar signs.

6.11 Code

To typeset source code, you usually don’t want LATEX to change the spacing, but rather you want it left
exactly as it is. For this, one employs the verbatim environment: just enclose anything that you want
inserted exactly as you typed in between \begin{verbatim} and \end{verbatim}. This is exactly how all
of the literal chunks of LATEX are typeset throughout this document. If you want to insert a literal LATEX
command into running text, the command to employ is \verb. This is an unusual command: it’s first
argument is the very next character after the b: it can be any character and it is used as a delimiter. It
is followed by any sequence of characters except that first character; a reoccurence of that first character
delimits the end of the command. Everything between the two occurences of the delimiter character is
inserted literally in typewriter style. As you might guess, this command is used everywhere in this document,
3 times so far in this paragraph. The first occurence in the current paragraph looks like this in the source file:
\verb|\begin{verbatim}|. You would employ this command if you want to insert anything that LATEX
would mistakenly interpret as a real command.

6.12 Floats

One usually places tables and figures inside figure and table environments, respectively. These are exam-
ples of floating environments – objects that cannot be split in the middle like normal text, and instead must
“float” to the next available space. Here is the figure environment bracketing Figure 1 from the beginning
of the handout:

\begin{figure}[ht]
body of figure here

\caption{The \LaTeX\ System}
\label{fig:texsys}
\end{figure}

The ht options given tell LATEX to place the figure exactly where it appears in your text, if possible, and
otherwise at the top of the next available page.

LATEX doesn’t always make the greatest choices when it comes to placing floats. Fighting with weird float
placement has to be handled on a case-by-case basis and is beyond the scope of this tutorial.

7 BibTEX

The bibtex program reads entries from a bibliography database file (.bib) and produces typeset citations
and bibliography entries in the style specified in your input file.

The database file consists of entries that look like this:

13

@book{Gaz79a,
author = {Gazdar, Gerald},
title = {Pragmatics : implicature, presupposition and logical form},
publisher = {Academic Press},
year = 1979

}

The part at the beginning of the entry that starts with the @-sign, in this case @book, specifies the type
of the entry. The content of the entry is enclosed in curly braces and subparts are separated by commas.
The first member of the entry is the key, the name that is used to cite an entry with the \cite command
in your document file. This may be any string you want so long as it is unique over all of the .bib files you
are using. These identifiers are case-sensitive3.

The rest of the entry are called fields and consist of the name of the field (which is case insensitive), an
equal sign, and the value of that field. The content of the field should be surrounded by either curly braces
or by a pair of double-quote (") characters (the braces/quotes are optional if the field has a purely numerical
value).

Some tips on making your entries turn out how you want them once they are typeset:

• If the text in your field contains any LATEX commands, say commands for accented characters, you
should enclose the command in curly braces as sometimes these will confuse bibtex.

• In a title entry, some bibliography styles will lower the case of all of all of the letters but the first.
If there are letters that should never be lower case (e.g. those beginning proper names in English),
enclose them in curly braces.

• Names in multiple author works should all be separated by the word and.

• Although you can enter names in author or editor fields as Given-name Family-name, I recommend
entering them as Family-name, Given-name instead since names with multi-word family names must
be entered this way anyway (otherwise bibtex will treat the first word of the family name as a middle
name).

In addition to book, entry types you will commonly use include article, incollection, inproceedings,
phdthesis and unpublished. For each type, some fields are required and others are optional. Rather than
enumerate these, I think it’s easier to emulate examples. Below is an example of each of the field types I
mention above. Also included is an example of a @string entry – this allows you to define abbreviations for
strings that are used in more than one entry in your file.

@string{sctc8 = "Proc. Eighth Annual Structure in Complexity Theory Conference"}
@article{Gaz79b,

author = {Gazdar, Gerald},
title = {A Solution to the Projection Problem},
journal = {Syntax and Semantics},
volume = 11,
number = 1,
year = 1979,
pages = {57--89}

}

3I use keys that look like the labels produced by the alpha bibliography style: essentially the first 3 letters of the author’s
name and a two digit year, with a letter appended if that author has more than one publication for that year

14

@incollection{Kra81,
author = {Kratzer, Angelika},
title = {The Notional Category of Modality},
booktitle = {Words, Worlds, and Contexts : New Approaches in Word Semantics},
editor = {Eikmeyer, Hans-Jurgen and Rieser, Hannes},
publisher = {W. de Gruyter},
year = 1981,
pages = {38--74}

}
@inproceedings{HH93,

author = {T. Hirst and D. Harel},
title = {Taking it to the limit: on infinite variants of {NP}-complete

problems},
booktitle = sctc8,
year = 1993

}
@phdthesis{Hei82,

author = {Heim, Irene Roswitha},
title = {The Semantics of Definite and Indefinite Noun Phrases},
school = {University of Massachusetts},
year = 1982

}
@unpublished{Ell95,

author = {Ellison, T. M.},
title = {Phonological Derivation in {O}ptimality {T}heory},
note = {Unpublished manuscript},
year = 1995

}

To place the reference list in your document, if your database file is named mybib.bib, put the com-
mand \bibliography{mybib} where you want the reference list to appear. That is, the argument to the
\bibliography is the name of the database file with the extension removed. This is usually last, just before
the \end{document} command. To make citations in the text of your document, simply invoke the \cite
command with the bibliography database key as an argument. For example, \cite{Hei82} cites Heim’s
Ph.D. thesis as listed above. You can cite multiple sources by separating the keys with commas. If you want
one or more items to appear in your reference list without having cited them, invoke the \nocite command
with the appropriate keys. Only the entries referenced in at least one \cite or \nocite command will
appear in your reference list – this allows you to keep a master bibliography file from which you can select
whatever entries you want without having to have all of them. If you have a small bib database that you
want to include in its entirety, include the special command \nocite{*} in your text.

What the printed bibliography looks like depends on the bibliography style you choose. You specify your
desired bibliography style with the \bibliographystyle command. There are many, many styles available;
the standard ones are plain, unsrt, alpha, and abbrv. Describing in detail what these styles look like
would be difficult and tedious – you should just try them and see. I can describe some differences between
the standard styles, though:

plain Entries are sorted alphabetically and labeled with
a number

unsrt Like plain, but in order of citation
alpha Like plain, except labels are strings formed from

the name of the author and the year of publication
abbrv Like plain, except names, titles, etc. are abbrevi-

ated

In each case, the citations in your text will look like the labels in the reference list.

15

It remains to describe how to use the bibtex command to generate your references. Once you have the
bibliography commands in your source file (and at least one \cite or \nocite command if this procedure
is going to do anything):

(1) Run the latex command as usual. It will complain about there being undefined references for each of
your citations, very similar to those described in subsection 6.6, the subsection on labeling.

(2) Run bibtex on your paper, specifying the filename of your paper without the .tex extension, e.g.
bibtex mypaper (what bibtex will actually look for is the .aux file automatically generated by latex
– that you have to leave the file extension off is just an annoying inconsistency). Don’t use the name of
your bib database as the argument to bibtex – it will consult your paper to see which bib files should
be referenced.

(3) Run latex on your source file twice more. The first time incorporates the reference list; the second
time resolves the labels.

You will need to redo this procedure each time you add or remove a citation: LATEX will let you know you
need to do so by complaining about undefined references.

8 Reference

• Leslie Lamport’s LATEX: A Document Preparation System is really a must-have. For more advanced
needs, there is The LATEX Companion, by Goossens, Mittelbach and Samarin (sometimes known as the
“big dog” book).

• The commands that comprise the LATEX system have useful manual pages describing the loads of
options several of them have. See especially the man page for dvips.

• The Penn Math department maintains a links page on TEX resources. This is a good place to start if
you want to find styles, fonts, etc., that don’t seem to be in the default set installed on your machine.
There is also information on TEX for Macs and PCs. The URL is:

http://www.math.upenn.edu/TeX.html

A A note on PDF

It has become desirable to be able to generate PDF (Adobe’s Portable Document Formant) output instead
of or in addition to Postscript, e.g., for distribution on the web. There are several ways of doing this, but
by far the easiest way of getting good results is to simply use the pdflatex command in place of latex.
This generates PDF from your LATEX source directly, bypassing the dvi file completely. The only drawback
that I am aware of of this method is that all of your figures must be converted to PDF as well, which
can be difficult or at least undesirable depending on how the original graphics were generated. Also, the
many LATEX reference books on the market have not yet been updated to reflect the shift to PDF in the
publishing world, so a lot of the nice postscript tricks detailed in those books are likely not to work. If
you can convert your figure to PDF with acceptable quality, then the figure is inserted with the command
\includegraphics{pic}, where your figure is in the file pic.pdf (i.e. the .pdf extension must be omitted).

If you are editing an old document that proves resistant to working with pdflatex, another path to take
to PDF is to use the command dvips -Ppdf ... to convert your file to postscipt with embedded fonts,
which should produce better results with postscript to PDF converters like Adobe Distiller (available as the
command distiller on gradient). Normally, the -P flag is used to choose a printer to print to, but most
modern LATEX installations have a fake printer made specifically to produce postscript that is intended to
become PDF.

16

