
CIS 500 — Software Foundations

Midterm I

Answer key
October 8, 2003



Inductive Definitions

Review: Recall that the function size, which calculates the total number of nodes in the abstract syntax tree
of a term in the language of arithmetic and boolean expressions, can be written either in standard recursive
function notation

size(true) = 1

size(false) = 1

size(0) = 1

size(succ t1) = size(t1) + 1

size(pred t1) = size(t1) + 1

size(iszero t1) = size(t1) + 1

size(if t1 then t2 else t3) = size(t1) + size(t2) + size(t3) + 1

or, equivalently, as the least relation closed under the following inference rules:

(true, 1) ∈ size

(false, 1) ∈ size

(0, 1) ∈ size

(t1, n) ∈ size

((succ t1), (n + 1)) ∈ size

(t1, n) ∈ size

((pred t1), (n + 1))) ∈ size

(t1, n) ∈ size

((iszero t1), (n + 1)) ∈ size

(t1, n1) ∈ size (t2, n2) ∈ size (t3, n3) ∈ size

((if t1 then t2 else t3), (n1 + n2 + n3 + 1)) ∈ size

1



1. (7 points) Suppose that we define another relation, weird, as the least relation closed under the fol-
lowing rules:

(true, 1) ∈ weird (W1)

(0, 1) ∈ weird (W2)

(0, 8) ∈ weird (W3)

(t1, n) ∈ weird

((succ t1), (n + 1)) ∈ weird
(W4)

(t1, n) ∈ weird

((succ (succ t1)), (n + 2)) ∈ weird
(W5)

((succ (succ t1)), n) ∈ weird

((pred t1), n) ∈ weird
(W6)

(iszero (iszero t1)), n) ∈ weird

((iszero t1), (n + 1)) ∈ weird
(W7)

(t1, n1) ∈ weird (t2, n2) ∈ weird (t3, n3) ∈ weird

((if t1 then t2 else t3), (n1 + n2 + n3 + 1)) ∈ weird
(W8)

Which of the following pairs are related by weird? Write Yes (if related) or No (if not) next to each pair.

(a) (true, 1) Answer: Yes

(b) ((if true then 0 else 0), 18) Answer: Yes

(c) ((if true then 0 else 0), 11) Answer: Yes

(d) ((pred 0), 3) Answer: Yes

(e) ((succ (succ true)), 3) Answer: Yes

(f) ((iszero 0), 3) Answer: No

(g) ((pred false), 3) Answer: No

Grading scheme: One point for each item.

2



2. (5 points) Here are the same rules again:

(true, 1) ∈ weird (W1)

(0, 1) ∈ weird (W2)

(0, 8) ∈ weird (W3)

(t1, n) ∈ weird

((succ t1), (n + 1)) ∈ weird
(W4)

(t1, n) ∈ weird

((succ (succ t1)), (n + 2)) ∈ weird
(W5)

((succ (succ t1)), n) ∈ weird

((pred t1), n) ∈ weird
(W6)

(iszero (iszero t1)), n) ∈ weird

((iszero t1), (n + 1)) ∈ weird
(W7)

(t1, n1) ∈ weird (t2, n2) ∈ weird (t3, n3) ∈ weird

((if t1 then t2 else t3), (n1 + n2 + n3 + 1)) ∈ weird
(W8)

Which of these rules can be dropped without changing the relation that they define? (I.e., what is the
smallest subset of the above rules such that the least relation closed under this subset is the same as
the least relation closed under all the rules?)

Write the name(s) of the unnecessary rule(s) here:

Answer: W5 and W7

gradingschemeTwo points off for each incorrect rule; two points off for each missing rule.

3



Typed Arithmetic Expressions

The full definition of the language of typed arithmetic and boolean expressions is reproduced, for
your reference, at the end of the exam. Some properties enjoyed by this language are listed at the
bottom of this page.

3. (5 points) Suppose we add a new rule

if true then t2 else t3 −→ t3 (E-FUNNY1)

to the ones given at the end of the exam. Do these properties of the original system continue to hold
in the presence of this rule?

For each property that becomes false when the proposed rule is added to the system, state the name of

the property and give a brief counter-example demonstrating that it does not hold in the presence of
the new rule.

Answer:

Determinism: if true then 0 else succ(0) can now evaluate in one step to either 0 or
succ 0.

Uniqueness: Same counter-example.

Grading scheme:

• One point off for an “almost correct” but slightly confused counter-example.

• Two points off for completely mangled or incomprehensible counter-example.

• Two points off for missing a property that becomes false.

• Two points off for each property that is incorrectly identified as becoming false.

• -3 for correct answer but no counter-examples

• No credit for no answer.

Properties:

Determinism (of one-step evaluation): if t −→ t ′ and t −→ t ′′, then t ′ = t ′′.

Uniqueness (of normal forms): If t −→
∗ u and t −→

∗ u ′, where u and u ′ are both normal forms,

then u = u ′.

Termination (of evaluation): For every term t there is some normal form t ′ such that t −→
∗ t ′.

Progress: If t : T, then either t is a value or else there is some t ′ with t −→ t ′.

Preservation: If t : T and t −→ t ′, then t ′ : T.

4



4. (5 points) Suppose instead that we add this rule:

t2 −→ t ′

2

if t1 then t2 else t3 −→ if t1 then t ′

2
else t3

(E-FUNNY2)

Answer in the same format as problem 3: For each property that becomes false when the proposed

rule is added, write its name and give a brief counter-example. The properties are listed again at the
bottom of this page for easy reference.

(N.b.: In this problem, we are considering the effect of adding the rule E-FUNNY2 to the original
language of typed arithmetic expressions, not including the rule E-FUNNY1 proposed in problem 3.)

Answer:

Determinism: if false then (pred 0) else (succ 0) can now evaluate in one step to ei-
ther succ 0 or if false then 0 else (succ 0). (There were several other correct sorts of
counter-examples for this one.)

Grading scheme: -3 for not identifying determinism as becoming false; -2 for not providing a counter-example
(or for a mangled counter-example); -1 for a somewhat-right counter-example. -2 each for incorrectly identifying
other properties as becoming false.

Properties:

Determinism (of one-step evaluation): if t −→ t ′ and t −→ t ′′, then t ′ = t ′′.

Uniqueness (of normal forms): If t −→
∗ u and t −→

∗ u ′, where u and u ′ are both normal forms,

then u = u ′.

Termination (of evaluation): For every term t there is some normal form t ′ such that t −→
∗ t ′.

Progress: If t : T, then either t is a value or else there is some t ′ with t −→ t ′.

Preservation: If t : T and t −→ t ′, then t ′ : T.

5



5. (5 points) Suppose instead that we add this rule to the original languge of typed arithmetic expres-
sions:

pred false −→ pred (pred false) (E-FUNNY3)

Do the properties of the original system continue to hold in the presence of this rule?

Answer in the same format as the previous two problems.

Answer:

Termination: pred false diverges.

Grading scheme: -2 for each property wrong (to a maximum of five); -2 for giving the correct property that
changed but not providing a counter-example.

Properties:

Determinism (of one-step evaluation): if t −→ t ′ and t −→ t ′′, then t ′ = t ′′.

Uniqueness (of normal forms): If t −→
∗ u and t −→

∗ u ′, where u and u ′ are both normal forms,

then u = u ′.

Termination (of evaluation): For every term t there is some normal form t ′ such that t −→
∗ t ′.

Progress: If t : T, then either t is a value or else there is some t ′ with t −→ t ′.

Preservation: If t : T and t −→ t ′, then t ′ : T.

6



6. (5 points) Suppose instead that we add this rule to the original languge of typed arithmetic expres-
sions:

0 : Bool (T-FUNNY4)

Do the properties of the original system continue to hold in the presence of this rule?

Answer in the same format as the previous three problems.

Answer:

Progress: if 0 then true else true has type Bool, is a normal form, and is not a value.

Grading scheme: -3 for saying Preservation fails and Progress is preserved; -2 for for claiming other properies
become false; -4 for claiming that no properties become false.

Properties:

Determinism (of one-step evaluation): if t −→ t ′ and t −→ t ′′, then t ′ = t ′′.

Uniqueness (of normal forms): If t −→
∗ u and t −→

∗ u ′, where u and u ′ are both normal forms,

then u = u ′.

Termination (of evaluation): For every term t there is some normal form t ′ such that t −→
∗ t ′.

Progress: If t : T, then either t is a value or else there is some t ′ with t −→ t ′.

Preservation: If t : T and t −→ t ′, then t ′ : T.

7



7. (5 points) Suppose instead that we add this rule to the original languge of typed arithmetic expres-
sions:

pred 0 : Bool (T-FUNNY5)

Do the properties of the original system continue to hold in the presence of this rule?

Answer in the same format as the previous three problems.

Answer:

Preservation: pred 0 has type Bool and evaluates in one step to 0, which does not have type
Bool.

Properties:

Determinism (of one-step evaluation): if t −→ t ′ and t −→ t ′′, then t ′ = t ′′.

Uniqueness (of normal forms): If t −→
∗ u and t −→

∗ u ′, where u and u ′ are both normal forms,

then u = u ′.

Termination (of evaluation): For every term t there is some normal form t ′ such that t −→
∗ t ′.

Progress: If t : T, then either t is a value or else there is some t ′ with t −→ t ′.

Preservation: If t : T and t −→ t ′, then t ′ : T.

8



Untyped lambda-calculus

8. (12 points) Write down the normal forms of the following λ-terms, or “none” if a term has no normal
form:

(a) (λs. λz. s (s z)) (λx. x)

Answer: λz. (λx. x) ((λx. x) z)

(b) (λx. x) (λx. x) (λx. x) (λx. x x)

Answer: λx. x x

(c) (λt. λf. t) (λt. λf. f) (λt. λf. t) (λt. λf. f)

Answer: λf. f

(d) (λx. x x) (λx. x x) (λx. x)

Answer: None

(e) λx. (λx. x x) (λx. x x)

Answer: λx. (λx. x x) (λx. x x)

(f) (λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))) (λs. λz. z)

Answer: λz. z

Grading scheme: Binary. 2 points each.

9



9. (6 points) Here are the definitions of the Church numerals and the basic operations over them from
Chapter 5 of TAPL:

c0 = λs. λz. z;
c1 = λs. λz. s z;
c2 = λs. λz. s (s z);
c3 = λs. λz. s (s (s z));

scc = λn. λs. λz. s (n s z);
plus = λm. λn. λs. λz. m s (n s z);
iszro = λm. m (λx. fls) tru;

tru = λt. λf. t
fls = λt. λf. f
and = λb. λc. b c fls;
not = λb. b fls tru

pair = λf.λs.λb. b f s;
fst = λp. p tru;
snd = λp. p fls;

zz = pair c0 c0;
ss = λp. pair (snd p) (plus c1 (snd p));
prd = λm. fst (m ss zz);

Use these combinators to fill in the blank in the following definition to yield a function less that,
when applied to two church numerals, cm and cn, returns tru if m < n and otherwise returns fls.

For example, less c2 c4 should evaluate to tru, while less c3 c1 and less c3 c3 should both
evaluate to fls.

Your answer should use only the combinators defined above (plus applications and variables). Do not
write any explicit λ-abstractions.

Answer:

less = λm. λn. (not (iszro (m prd n)))

Grading scheme: One point off for missing parenthesis or wrong order of evaluation; One point off for swapping
m and n; Two points off for neglecting the case of m = n; Three points off for violating the rules (No lambda
abstractions).

10



10. (6 points) Recall the Church encoding of lists from the solution to homework 4.

nil = λc. λn. n;
cons = λh. λt. λc. λn. c h (t c n);
head = λl. l (λh.λt.h) fls;
tail = λl.

fst (l (λx. λp. pair (snd p) (cons x (snd p)))
(pair nil nil));

isnil = λl. l (λh.λt.fls) tru;

Fill in the blanks in the following definition to yield a lambda term map that takes a term l represent-
ing a list and a function f, applies f to each element of l, and yields a list of the results (just like the
List.map function in OCaml). For example,

map scc (cons c2 (cons c0 (cons c1 nil)))

should be equivalent to

(cons c3 (cons c1 (cons c2 nil))).

Your answer should consist entirely of variables and applications—no lambda-abstractions and no
uses of any of the combinators defined above.

Answer:

map = λl. λf. λc. λn. l (λh. λt. c (f h) t) n

Grading scheme: One point off for missing parenthesis or wrong order of evaluation; One point off for each
slight mistake if the answer is almost right; Partial credits are generously given if the answer is structurally
similar to the correct answer.

11



Nameless representation of terms

11. (2 points) Suppose we have defined the naming context Γ = a,b,c,d. Then one possible “named
representation” of the deBruijn term λ. 1 0 (λ. 1) would be λx. d x (λy. x).

Write down a possible named representation for each of the following deBruijn terms.

(a) λ. λ. 1 3 0

Answer: λx. λy. x c y

(b) λ. 3 (λ. 2 1 1) 1

Answer: λx. b (λy. d x x) d

Grading scheme: Binary

12. (3 points) Write down (in deBruijn notation) the normal form of the following deBruijn term.

(λ. λ. 1 (λ. 1)) (λ. 0)

Answer: λ. (λ. 0) (λ.1)

Grading scheme: Binary

12



Behavioral Equivalence

13. (14 points) Recall the definitions of observational and behavioral equivalence from the lecture notes:

• Two terms s and t are observationally equivalent iff either both are normalizable (i.e., they reach a
normal form after a finite number of evaluation steps) or both are divergent.

• Terms s and t are behaviorally equivalent iff, for every finite sequence of values v1, v2, ..., vn,
the applications

s v1 v2 ... vn

and
t v1 v2 ... vn

are observationally equivalent.

Recall, also, the following definitions of lambda-terms from the text:

c0 = λs. λz. z;
c1 = λs. λz. s z;
c2 = λs. λz. s (s z);
c3 = λs. λz. s (s (s z));
plus = λm. λn. λs. λz. m s (n s z);
fix = λf. (λx. f (λy. x x y)) (λx. f (λy. x x y));

For each of the following pairs of terms, write Yes if the terms are behaviorally equivalent and no if
they are not.

(a) tru
λx. λy. (λz. z) x

Answer: Yes

(b) λx. λy. x y
λx. x

Answer: Yes

(c) plus c2 c1

c3

Answer: Yes

(d) λx. λy. x y
λx. λy. x (λz. z) y

Answer: No

(e) (λx. x x) (λx. x x)
(λx. x x x) (λx. x x x)

Answer: Yes

(f) (λx. x x) (λx. x x)
λx. (λx. x x) (λx. x x)

Answer: No

(g) λf. (λx. f (x x)) (λx. f (x x))
fix

Answer: No

Grading scheme: Binary; each item worth two points.

13



For reference: Boolean and arithmetic expressions

Syntax

t ::= terms

true constant true
false constant false
if t then t else t conditional
0 constant zero
succ t successor
pred t predecessor
iszero t zero test

v ::= values
true true value

false false value
nv numeric value

nv ::= numeric values
0 zero value
succ nv successor value

T ::= types
Bool type of booleans

Nat type of numbers

Evaluation

if true then t2 else t3 −→ t2 (E-IFTRUE)

if false then t2 else t3 −→ t3 (E-IFFALSE)

t1 −→ t ′

1

if t1 then t2 else t3 −→ if t ′

1
then t2 else t3

(E-IF)

t1 −→ t ′

1

succ t1 −→ succ t ′

1

(E-SUCC)

pred 0 −→ 0 (E-PREDZERO)

pred (succ nv1) −→ nv1 (E-PREDSUCC)

t1 −→ t ′

1

pred t1 −→ pred t ′

1

(E-PRED)

iszero 0 −→ true (E-ISZEROZERO)

iszero (succ nv1) −→ false (E-ISZEROSUCC)

t1 −→ t ′

1

iszero t1 −→ iszero t ′

1

(E-ISZERO)

continued on next page...

14



Typing

true : Bool (T-TRUE)

false : Bool (T-FALSE)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-IF)

0 : Nat (T-ZERO)

t1 : Nat

succ t1 : Nat
(T-SUCC)

t1 : Nat

pred t1 : Nat
(T-PRED)

t1 : Nat

iszero t1 : Bool
(T-ISZERO)

15


