
CIS 500 — Software Foundations

Midterm I, Review Questions



Untyped lambdacalculus

1. (2 points) We have seen that a linear expression like λx. λy. x y x is shorthand for an abstract syntax

tree that can be drawn like this:

λx

λy

apply

rrrr
FFFF

apply

ww
ww

MMMMM
x

x y

Draw the abstract syntax trees corresponding to the following expressions:

(a) a b c

(b) (λx. b) (c d)

1



2. (10 points) Write down the normal forms of the following λterms:

(a) (λt. λf. t) (λt. λf. f) (λx. x)

(b) (λx. x) (λx. x) (λx. x) (λx. x)

(c) λx. x (λx. x) (λx. x)

(d) (λx. x (λx. x)) (λx. x (λx. x x))

(e) (λx. x x x) (λx. x x x)

3. (4 points) Recall the following abbreviations from Chapter 5:

tru = λt. λf. t

fls = λt. λf. f

not = λb. b fls tru

Complete this definition of a lambda term that takes two church booleans, b and c, and returns the

logical “exclusive or” of b and c.

xor = λb. λc. ___________________________________________

2



4. (8 points) A list can be represented in the lambdacalculus by its fold function. (OCaml’s name for this

function is fold_right; it is also sometimes called reduce.) For example, the list [x,y,z] becomes a

function that takes two arguments c and n and returns c x (c y (c z n))). The definitions of nil and

cons for this representation of lists are as follows:

nil = λc. λn. n;

cons = λh. λt. λc. λn. c h (t c n);

Suppose we now want to define a λterm append that, when applied to two lists l1 and l2, will append

l1 to l2 — i.e., it will return a λterm representing a list containing all the elements of l1 and then

those of l2. Complete the following definition of append.

append = λl1. λl2. λc. λn. ________________________________________________________

5. (6 points) Recall the callbyvalue fixedpoint combinator from Chapter 5:

fix = λf. (λx. f (λy. x x y)) (λx. f (λy. x x y));

We can use fix to write a function sumupto that, given a Church numerals m, calculates the sum of all

the numbers less than or equal to m, as follows.

g = λf. λm.

(iszro m)

(λx. c0)

(λx. plus _________ (_________ (prd m)))

tru;

sumupto = fix g;

Fill in the two omitted subterms.

3



Nameless representation of terms

6. (4 points) Suppose we have defined the naming context Γ = a,b,c,d. What are the deBruijn represen

tations of the following λterms?

(a) λx. λy. x y d

(b) λx. c (λy. (c y) x) d

7. (4 points) Write down (in deBruijn notation) the terms that result from the following substitutions.

(a) [0, λ.0]((λ. 0 1) 1)

(b) [0, λ. 0 1]((λ. 0 1) 0)

4



Typed arithmetic expressions

The full definition of the language of typed arithmetic and boolean expressions is reproduced, for your

reference, on page 10.

8. (9 points) Suppose we add the following new rule to the evaluation relation:

succ true -→ pred (succ true)

Which of the following properties will remain true in the presence of this rule? For each one, write

either “remains true” or else “becomes false,” plus (in either case) a onesentence justification of your

answer.

(a) Termination of evaluation (for every term t there is some normal form t′ such that t -→∗ t′)

(b) Progress (if t is well typed, then either t is a value or else t -→ t′ for some t′)

(c) Preservation (if t has type T and t -→ t′, then t′ also has type T)

9. (9 points) Suppose, instead, that we add this new rule to the evaluation relation:

t -→ if true then t else succ false

Which of the following properties remains true? (Answer in the same style as the previous question.)

(a) Termination of evaluation (for every term t there is some normal form t′ such that t -→∗ t′)

(b) Progress (if t is well typed, then either t is a value or else t -→ t′ for some t′)

(c) Preservation (if t has type T and t -→ t′, then t′ also has type T)

5



10. (9 points) Suppose, instead, that we add a new type, Funny, and add this new rule to the typing

relation:

if true then false else false : Funny

Which of the following properties remains true? (Answer in the same style as the previous question.)

(a) Termination of evaluation (for every term t there is some normal form t′ such that t -→∗ t′)

(b) Progress (if t is well typed, then either t is a value or else t -→ t′ for some t′)

(c) Preservation (if t has type T and t -→ t′, then t′ also has type T)

6



Simply typed lambdacalculus

The definition of the simply typed lambdacalculus with booleans is reproduced for your reference on

page 12.

11. (6 points) Write down the types of each of the following terms (or “ill typed” if the term has no type).

(a) λx:Bool. x x

(b) λf: Bool→Bool. λg:Bool→Bool. g (f (g true))

(c) λh:Bool. (λi:Bool→Bool. i false) (λk:Bool.true)

7



Operational semantics

12. (9 points) Recall the rules for “bigstep evaluation” of arithmetic and boolean expressions from HW 3.

v ⇓ v

t1 ⇓ true t2 ⇓ v2

if t1 then t2 else t3 ⇓ v2

t1 ⇓ false t3 ⇓ v3

if t1 then t2 else t3 ⇓ v3

t1 ⇓ nv1

succ t1 ⇓ succ nv1

t1 ⇓ 0

pred t1 ⇓ 0

t1 ⇓ succ nv1

pred t1 ⇓ nv1

t1 ⇓ 0

iszero t1 ⇓ true

t1 ⇓ succ nv1

iszero t1 ⇓ false

The following OCaml definitions implement this evaluation relation almost correctly, but there are

three mistakes in the eval function—one each in the TmIf, TmSucc, and TmPred cases of the outer

match. Show how to change the code to repair these mistakes. (Hint: all the mistakes are omissions.)

let rec isnumericval t = match t with

TmZero(_) → true

| TmSucc(_,t1) → isnumericval t1

| _ → false

let rec isval t = match t with

TmTrue(_) → true

| TmFalse(_) → true

| t when isnumericval t → true

| _ → false

let rec eval t = match t with

v when isval v → v

| TmIf(_,t1,t2,t3) →

(match t1 with

TmTrue _ → eval t2

| TmFalse _ → eval t3

| _ → raise NoRuleApplies)

| TmSucc(fi,t1) →

(match eval t1 with

nv1 → TmSucc (dummyinfo, nv1)

| _ → raise NoRuleApplies)

| TmPred(fi,t1) →

(match eval t1 with

TmZero _ → TmZero(dummyinfo)

| _ → raise NoRuleApplies)

| TmIsZero(fi,t1) →

(match eval t1 with

TmZero _ → TmTrue(dummyinfo)

| TmSucc(_, _) → TmFalse(dummyinfo)

| _ → raise NoRuleApplies)

| _ → raise NoRuleApplies

8



9



For reference: Untyped boolean and arithmetic expressions

Syntax

t ::= terms

true constant true

false constant false

if t then t else t conditional

0 constant zero

succ t successor

pred t predecessor

iszero t zero test

v ::= values

true true value

false false value

nv numeric value

nv ::= numeric values

0 zero value

succ nv successor value

T ::= types

Bool type of booleans

Nat type of numbers

Evaluation

if true then t2 else t3 -→ t2 (EIfTrue)

if false then t2 else t3 -→ t3 (EIfFalse)

t1 -→ t′1

if t1 then t2 else t3 -→ if t′1 then t2 else t3

(EIf)

t1 -→ t′1

succ t1 -→ succ t′1
(ESucc)

pred 0 -→ 0 (EPredZero)

pred (succ nv1) -→ nv1 (EPredSucc)

t1 -→ t′1

pred t1 -→ pred t′1
(EPred)

iszero 0 -→ true (EIszeroZero)

iszero (succ nv1) -→ false (EIszeroSucc)

t1 -→ t′1

iszero t1 -→ iszero t′1
(EIsZero)

continued on next page...

10



Typing

true : Bool (TTrue)

false : Bool (TFalse)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(TIf)

0 : Nat (TZero)

t1 : Nat

succ t1 : Nat
(TSucc)

t1 : Nat

pred t1 : Nat
(TPred)

t1 : Nat

iszero t1 : Bool
(TIsZero)

11



For reference: Simply typed lambda calculus with booleans

Syntax

t ::= terms

true constant true

false constant false

if t then t else t conditional

x variable

λx:T.t abstraction

t t application

v ::= values

true true value

false false value

λx:T.t abstraction value

T ::= types

Bool type of booleans

T→T type of functions

Evaluation

if true then t2 else t3 -→ t2 (EIfTrue)

if false then t2 else t3 -→ t3 (EIfFalse)

t1 -→ t′1

if t1 then t2 else t3 -→ if t′1 then t2 else t3

(EIf)

t1 -→ t′1

t1 t2 -→ t′1 t2

(EApp1)

t2 -→ t′2

v1 t2 -→ v1 t
′

2

(EApp2)

(λx:T11.t12) v2 -→ [x, v2]t12 (EAppAbs)

Typing

true : Bool (TTrue)

false : Bool (TFalse)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(TIf)

x:T ∈ Γ

Γ ` x : T
(TVar)

Γ , x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2

(TAbs)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(TApp)

12


