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Chapter 1

Introduction

This document is an introduction to ML programming, specifically for the
Objective Caml (OCaml) programming language from INRIA [4}6]. OCaml is
a dialect of the ML (Meta-Language) family of languages, which derive from
the Classic ML language designed by Robin Milner in 1975 for the LCF (Logic
of Computable Functions) theorem prover [2, [3].

OCaml shares many features with other dialects of ML, and it provides
several new features of its own. Throughout this document, we use the
term ML to stand for any of the dialects of ML, and OCaml when a feature
is specific to OCaml.

e ML is a functional language, meaning that functions are treated as
first-class values. Functions may be nested, functions may be passed
as arguments to other functions, and functions can be stored in data
structures. Functions are treated like their mathematical counterparts
as much as possible. Assignment statements that permanently change
the value of certain expressions are permitted, but used much less
frequently than in languages like C or Java.

¢ ML is strongly typed, meaning that the type of every variable and every
expression in a program is determined at compile-time. Programs that
pass the type checker are safe: they will never “go wrong” because of
an illegal instruction or memory fault.

¢ Related to strong typing, ML uses type inference to infer types for
the expressions in a program. Even though the language is strongly
typed, it is rare that the programmer has to annotate a program with
type constraints.

e The ML type system is polymorphic, meaning that it is possible to
write programs that work for values of any type. For example, it is

7



8 CHAPTER 1. INTRODUCTION

straightforward to define data structures like lists, stacks, and trees
that can contain elements of any type. In a language like C or Java,
the programmer would either have to write different implementations
for each type (say, lists of integers vs. lists of floating-point values),
or else use explicit coercions to bypass the type system.

e ML implements a pattern matching mechanism that unifies case anal-
ysis and data destructors.

e ML includes an expressive module system that allows data structures
to be specified and defined abstractly. The module system includes
functors, which are are functions over modules that can be used to
produce one data structure from another.

e OCaml is also the only widely-available ML implementation to include
an object system. The module system and object system complement
one another: the module system provides data abstraction, and the
object system provides inheritance and re-use.

e OCaml includes a compiler that supports separate compilation. This
makes the development process easier by reducing the amount of code
that must be recompiled when a program is modified. OCaml actually
includes two compilers: a byte-code compiler that produces code for
the portable OCaml byte-code interpreter, and a native-code compiler
that produces efficient code for many machine architectures.

e One other feature should be mentioned: all the languages in the ML
family have a formal semantics, which means that programs have a
mathematical interpretation, making the programming language eas-
ier to understand and explain.

1.1 Functional and imperative languages

The ML languages are semi-functional, which means that the normal pro-
gramming style is functional, but the language includes assignment and
side-effects.

To compare ML with an imperative language, here is how Euclid’s algo-
rithm would normally be written in an imperative language like C.

/-.'.-

* Determine the greatest common divisor of two positive
* numbers a and b. We assume a>b.

7'\-/

int gcd(int a, int b)

{

int r;
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while(r = a % b) {

a = b;
b =r;
}

return b;

In a language like C, the algorithm is normally implemented as a loop,
and progress is made by modifying the state. Reasoning about this program
requires that we reason about the program state: give an invariant for the
loop, and show that the state makes progress on each step toward the goal.

In OCaml, Euclid’s algorithm is normally implemented using recursion.
The steps are the same, but there are no side-effects. The 1et keyword spec-
ifies a definition, the rec keyword specifies that the definition is recursive,
and the gcd a b defines a function with two arguments a and b.

Tet rec gcd a b =
let r = amod b in
if r = 0 then
b
else
gcd b r

In ML, programs rarely use assignment or side-effects except for I/0.
Functional programs have some nice properties: one is that data structures
are persistent (by definition), which means that no data structure is ever
destroyed.

There are problems with taking too strong a stance in favor of functional
programming. One is that every updatable data structure has to be passed
as an argument to every function that uses it (this is called threading the
state). This can make the code obscure if there are too many of these data
structures. We take a moderate approach. We use imperative code when
necessary, but its use is discouraged.

1.2 Organization

This document is organized as a user guide to programming in OCaml. It
is not a reference manual: there is already an online reference manual. I
assume that the reader already has some experience using an imperative
programming language like C; I'll point out the differences between ML and
C in the cases that seem appropriate.

1.3 Additional Sources of Information

This document was originally used for a course in compiler construc-
tion at Caltech. The course material, including exercises, is available at
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http://www.cs.caltech.edu/courses/csl134/cs134b.

The OCaml reference manual [4] is available on the OCaml home page
http://www.ocaml.org/.

The author can be reached at jyh@cs.caltech.edu.



Chapter 2

Simple Expressions

Many functional programming implementations include a significant
runtime that defines a standard library and a garbage collector. They also
often include a toploop that can be used to interact with the system. OCaml
provides a compiler, a runtime, and a toploop. By default, the toploop is
called ocaml1. The toploop prints a prompt (#), reads an input expression,
evaluates it, and prints the result . Expressions in the toploop must be
terminated by a double-semicolon ; ;. My machine name is kenai.

<kenai 113>ocaml
Objective Caml version 2.04

# 1+ 4;;
- :1int =5

The toploop prints the type of the result (in this case, int) and the value
(5). To exit the toploop, you may type the end-of-file character (usually
Control-D in Unix, and Control-Z in Windows).

2.1 Basic expressions

OCaml is a strongly typed language: every expression must have a type, and
expressions of one type may not be used as expressions in another type.
There are no implicit coercions. Normally, you do not have to input the
types of expressions. Type inference [1] is used to figure out the types for
yOu.

The basic types are unit, int, char, float, bool, and string.

11
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2.1.1 unit: the singleton type

The simplest type in OCaml is the unit type, which contains one element:
(). This seems to be a rather silly type. In a functional language every func-
tion must return a value; unit is commonly used as the value of a procedure
that computes by side-effect. It corresponds to the void type in C.

2.1.2 1int: the integers

The int type is the type of signed integers: ...,-2,-1,0,1,2,.... The pre-
cision is finite. On a 32-bit machine architecture, the precision is 31 bits
(one bit is reserved for use by the runtime), and on a 64-bit architecture, the
precision is 63 bits.

There are the usual expressions on integers [+ (addition),[-](subtraction),
(multiplication), [/] (division), and (remainder). In addition there are
the normal shifting and masking operators on the binary representations
of the numbers.

« i[1s1]j: logical shift left i - 2J.

. i j: logical shift right i + 2/ (i is treated as an unsigned twos-
complement number).

« i[as1]j: arithmetic shift left i - 2J.

. i j: arithmetic shift right i + 27 (the sign of i is preserved).
e ifland|j: bitwise-and.

o i[Tor|j: bitwise-or.

o i[Txor]j: bitwise exclusive-or.

2.1.3 float: the floating-point numbers

The floating-point numbers provide fractional numbers. The syntax of a
floating point includes either a decimal point, or an exponent (base 10) de-
noted by an E. A digit is required before the decimal point. Here are a few
examples.

0.2, 2e7, 3.1415926, 31.415926e-1

The integer arithmetic operators do not work with floating point values.
The corresponding operators include a *.”: addition is [+.} subtraction is[-.]
multiplication is [*.] and division is There are also coercion functions

int of floatland[f
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<kenai 114>1!!
ocaml
Objective Caml version 2.04

# 31.415926e-1;;
- : float = 3.1415926
# float_of_int 1;;

- : float = 1
# int_of_float 1.2;;
- :int =1

# 3.1415926 *. 17.2;;
- 1 float = 54.03539272

2.1.4 char: the characters

The character type is implemented as characters from the ASCII character
set. The syntax for a character constant uses single quotes.

a’, ’Z’, ’\120’, ’\t’, ’\r’, '\n’

The numerical specification is in decimal, so *\120’ is the ASCII char-
acter ’x’, not 'P’.

There are functions for converting between characters and integers.
The function [Char. code] returns the integer corresponding to a charac-
ter, and [Char.chr| returns the character with the given ASCII code. The

[Char. Towercaseland|Char.uppercase|functions give the equivalent lower
or uppercase characters.

2.1.5 string: character strings

Character strings are a built-in type. Unlike strings in C, character strings
are not arrays of characters, and they do not use *\000’ as a termination
character. The[String. Tength|function computes the length of the string.
The syntax for strings uses double-quotes. Characters in the string may use
the \ddd syntax.

"HeT1o0", " wor1d\000 is not a terminator\n",
The " operator performs string concatenation.

# "Hello " ~ "wor1d\OOONot a terminator\n";;

- : string = "Hello wor1d\0OONot a terminator\n"

# Printf.printf "%s" ("Hello " ~ "wor1d\00ONot a terminator\n");;
Hello worldNot a terminator

- runit = O

Strings also allow random access. The s. [i] operator gets character i
from string s, and the command s.[i] <- c replaces character i in string
s by character c.



14 CHAPTER 2. SIMPLE EXPRESSIONS

2.1.6 bool: the Boolean values

There are only two Boolean values: true and false. Every relation returns
a Boolean value. Logical negation is performed by the not function. The
standard binary relations take two values of equal types and compare them
in the normal way.

e X = y: equality

e X <> y: x is not equal to y
e X < y: x isless than y

e X <= Yy: x is no more than y
e X >=7: x is no less than y

e X > y: x is greater than y

These relations operate on values of arbitrary type. For the base types
in this chapter, the comparison is what you would expect. For values of
other types, the value is implementation-dependent.

The logical operators are also defined: && is conjunction, and | | is dis-
junction. Both operators are the “short-circuit” versions: the second clause
is not evaluated if the result can be determined from the first clause. For ex-
ample, in the following expression, the clause 3 > 4 is not evaluated (which
makes no difference at this point, but will make a difference when we add
side-effects).

#1 <2 || 3> 4;;
- : bool = true

There is also a conditional operator if b then e; else ey.

# if 1 < 2 then
3+ 7
else
455
- :1int = 10

2.2 Compiling your code

If you wish to compile your code, you should place it in a file with the
.m1 suffix. There are two compilers: ocamlc compiles to byte-code, and
ocamlopt compiles to native machine code. The native code is roughly
three times faster, but compile time is longer. The usage is similar to cc.
The double-semicolon terminators are not necessary in the source files; you
may omit them if the source text is unambiguous.
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e To compile a single file, use ocamlc -g -c file.ml. This will
produce a file file.cmo. The ocamlopt programs produces a file
file.cmx. The -g option includes debugging information in the out-
put file.

o To link together several files into a single executable, use ocamlc
to link the .cmo files. Normally, you would also specify the -o
program_file option to specify the output file (the default is a.out).
for example, if you have to program files x.cmo and y.cmo, the com-
mand would be:

<kenai 165>ocamlc -g -0 program x.cmo y.cmo
<kenai 166>./program

There is also a debugger ocamldebug that you can use to debug your
programs. The usage is a lot like gdb, with one major exception: execution
can go backwards. The back command will go back one instruction.

2.3 The OCaml type system

The ML languages are strictly typed. In addition, every expression has a
exactly one type. In contrast, C is a weakly-typed language: values of one
type can be coerced to a value of any other type, whether the coercion makes
sense or not. Lisp is not an explicitly typed language: the compiler (or
interpreter) will accept any program that is syntactically correct; the types
are checked at run time. The type system is not necessarily related to safety:
both Lisp and ML are safe languages, while C is not.

What is “safety?” There is a formal definition based on the operational
semantics of the programming language, but an approximate definition is
that a valid program will never fault because of an invalid machine oper-
ation. All memory accesses will be valid. ML guarantees safety by guar-
anteeing that every correctly-typed value is valid, and Lisp guarantees it by
checking for validity at run time. One surprising (some would say annoying)
consequence is that ML has no nil values; again, all correctly type values are
valid.

As you learn OCaml, you will initially spend a lot of time getting the
OCaml type checker to accept your programs. Be patient, you will eventually
find that the type checker is one of your best friends. It will help you figure
out which programs are bogus. If you make a change, the type checker will
help track down all the parts of your program that are affected.

In the meantime, here are some rules about type checking.

1. Every expression has exactly one type.

2. When an expression is evaluated, one of four things may happen:
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(a) it may evaluate to a value of the same type as the expression,
(b) it may raise an exception (we’ll discuss exceptions in Chapter [7),
(c) it may not terminate,

(d) it may exit.

One of the important points here is that there are no “pure commands.”
Even assignments produce a value (although the value has the trivial unit

type).
To begin to see how this works, let’s look at the conditional expression.

<kenai 229>cat -b x.ml
14if 1 < 2 then

2 1
3 else
4 1.3

<kenai 230>ocamlc -c x.ml
File "x.m1", 1ine 4, characters 3-6:
This expression has type float but is here used with type int

This error message seems rather cryptic: it says that there is a type error
on line 4, characters 3-6 (the expression 1. 3). The conditional expression
evaluates the test. If the test is true, it evaluates the first branch. Otherwise,
it evaluates the second branch. In general, the compiler doesn’t try to figure
out the value of the test during type checking. Instead, it requires that both
branches of the conditional have the same type (so that the value will have
the same type no matter how the test turns out). Since the expressions 1
and 1.3 have different types, the type checker generates an error.

One other issue: the else branch is not required in a conditional. If it is
omitted, the conditional is treated as if the else case returns the () value.
The following code has a type error.

<kenai 236>cat -b y.ml
14if 1 < 2 then
2 1
<kenai 237>ocamlc -c y.ml
File "y.m1", 1ine 2, characters 3-4:
This expression has type int but is here used with type unit

In this case, the expression 1 is flagged as a type error, because it does
not have the same type as the omitted else branch.

2.4 Comment convention

In OCaml, comments are enclosed in matching (* and *) pairs. Comments
may be nested, and the comment is treated as white space.



Chapter 3

Variables and Functions

So far, we have only considered simple expressions not involving vari-
ables. In ML, variables are names for values. In a purely functional setting,
it is not possible to tell the difference between a variable and the value it
stands for.

Variable bindings are introduced with the Tet keyword. The syntax of a
simple top-level declaration is as follows.

Tet name = expr

For example, the following code defines two variables x and y and adds
them together to get a value for z.

# let x = 1;;
val x : int =1
# lety = 2;;
val y : int = 2
# let z = X + y;;
val z : int = 3

Definitions using et can also be nested using the in form.
let name = exprl in expr2

The expression expr? is called the body of the Tet. The variable name is
defined as the value of expr1 within the body. If there is only one definition
for name, the variable name is defined only in the body expr2 and not exprl
(or anywhere else).

Lets with a body are expressions; the value of a lTet expression is the
value of the body.

17
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# let x = 1 in
let y = 2 1in
X + Y5,
- :1int = 3
# let z =
let x = 1 1in
let y = 2 1in
X+ Y5,
val z : int = 3

Binding is static (lexical scoping): if there is more than one definition
for a variable, the value of the variable is defined by the most recent let
definition for the variable. The variable is bound only in the body of the let;
or, for toplevel definitions, the rest of the file.

# let x 1 in
let x = 2 1in
let y = x + x in
X +Y;5;
- :1int = 6

What is the value of z in the following definition?

# let x = 1;;
val x : int =1
# let z =

Jet x = 2 1in
Jet Xx = X + X 1in

X + X;;
val z : int = 8
# X;;

- rint =1

3.1 Functions

Functions are defined with the fun keyword. The fun is followed by a se-
quence of variables that name the arguments, the -> separator, and then the
body of the function. By default, functions are not named. In ML, functions
are values like any other. They may be constructed, passed as arguments,
and applied to arguments. Like any other value, they may be named by
using a let.

# let incr = fun i -> i + 1;;
val incr : int -> int = <fun>
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Note the type int -> 1int for the function. The -> is for a function type.
The type before the arrow is the type of the function’s argument, and the
type after the arrow is the type of the result. The incr function takes an
integer argument, and returns an integer.

The syntax for function application (function call) is concatenation: the
function is followed by its arguments. The precedence of function aplication
is higher than most operators. Parentheses are needed for arguments that
are not simple expressions.

# incr 2;;

- int = 3

# incr 2 * 3;;

- int = 9

# incr (2 * 3);;
- 1int =7

Functions may also be defined with multiple arguments. For example, a
function to compute the sum of two integers can be defined as follows.

# Tet sum = fun i j -> 1 + Jj;;

val sum : int -> int -> int = <fun>
# sum 3 4;;

- 1 1int =7

Note the type for sum: int -> int -> int. The arrow associates to the
right, so this could also be written int-> (int -> int). Thatis, sumis a
function that takes a single integer argument, and returns a function that
takes another integer argument and returns an integer. Strictly speaking,
all functions in ML take a single argument; multiple-argument functions are
implemented as nested functions (this is called “Currying”, after Haskell
Curry, a famous logician who had a significant impact on the design and
interpretation of programming languages). The definition of sum above is
equivalent to the following explicitly-curried definition.

# let sum = (fun i -> (fun j -> i + j));;
val sum : int -> int -> int = <fun>

The application of sum to only one argument is called a “partial applica-
tion.”

# let incr = sum 1;;

val incr : int -> int = <fun>
# incr 5;;

- :1int = 6

Since named functions are so common, OCaml provides an alternate
syntax for functions using a let definition. The formal parameters of the
function are listed after to the function name, before the equality symbol.
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# let sum i j =
i+ 355
val sum : int -> int -> int = <fun>

3.1.1 Scoping and nested functions

Functions may be arbitrarily nested. They may also be defined and passed as
arguments. The rule for scoping uses static binding: the value of a variable
is determined by the code in which a function is defined—not by the code
in which a function is evaluated. For example, another way to define sum is
as follows.

# let sum i =
let sum2 j =
i+ 3
in
sum2;;
val sum : int -> int -> int = <fun>
# sum 3 4;;
- int =7

To illustrate the scoping rules, let’s consider the following definition.

# let i = 5;;
val i : int = 5
# let addi j =
i+ 355
val addi : int -> int = <fun>
# let i = 7;;
val i : int =7
# addi 3;;
- :val = 8

In the addi function, the value of i is defined by the previous definition
of i as 5. The second definition of i has no effect on the definition for add,
and the application of addi to the argument 3 results in 3 + 5 = 8.

3.1.2 Recursive functions

Suppose we want to define a recursive function: that is, a function that is
used in its own function body. In functional languages, recursion is used
to express repetition and looping. For example, the “power” function that
computes x! would be defined as follows.

# let rec power i x =
if i = 0 then



3.1. FUNCTIONS 21

1.0
else
X (power (i - 1) x);;
val power : int -> float -> float = <fun>
# power 5 2.0;;
- : float = 32

*

Note the use of the rec modifier after the Tet keyword. Normally, the
function is not defined in its own body. The following definition is very
different.

# let power_broken i x =
(float_of_int i) +. x;;
val power_broken : int -> float -> float = <fun>
# let power_broken i x =
if i = 0 then
1.0
else
x *. (power_broken (i - 1) x);;
val power_broken : int -> float -> float = <fun>
# power_broken 5 2.0;;
- : float = 12

Mutually recursive definitions (functions that call one another) can be
defined using the and keyword to connect several 1et definitions.

# let rec f1i j =
if i = 0 then
J
else
g G -1
and g j =
if j mod 3 = 0 then
J
else
f G- 353
val f : int -> int -> int = <fun>
val g : int -> int = <fun>
#9 5;;
- : int = 3

3.1.3 Higher order functions

Let’s consider a definition where a function is passed as an argument, and
another function is returned. Given an arbitrary function f on the real
numbers, a numerical derivative is defined approximately as follows.
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# let dx = 1le-10;;
val dx : float = le-10
# let deriv f =
(fun x > (f X +. dx) -. £ x) /. dX);;
val deriv : (float -> float) -> float -> float = <fun>

Remember, the arrow associates to the right, so another way to write the
typeis (float -> float) -> (float -> float). That s, the derivative
is a function that takes a function as an argument, and returns a function.

Let’s apply this to the power function defined above, partially applied to
the argument 3.

# let f = power 3;;

val f : float -> float = <fun>
# f 10.0;;

- : float = 1000

# let f’ = deriv f;;

val f’ : float -> float = <fun>

# f’ 10.0;;
- : float = 300.000237985
# f’ 5.0;;
- : float = 75.0000594962
# f 1.0;;

: float = 3.00000024822

As we would expect, the derivative of x3 is approximately 3x2. To get
the second derivative, we apply the deriv function to f’.

# let f’’ = deriv f’;;

val f’’ : float -> float = <fun>
# '’ 0.0;;

- : float = 6e-10

# f 1.0;;

- : float = 0

# f’’ 10.0;;

- : float = 0

The second derivative, which we would expect to be 6x, is way off! Ok,
there are some numerical errors here. Don’t expect functional programming
to solve all your problems.

# let g x = 3.0 *. x *. X;;
val g : float -> float = <fun>
# let g’ = deriv g;;

val g’ : float -> float = <fun>
#9’ 1.0;;

- : float = 6.00000049644

# g’ 10.0;;

- @ float = 59.9999339101
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3.2 Variable names

As you may have noticed in the previous section, the ’ character is a valid
character in a variable name. In general, a variable name may contain letters
(lower and upper case), digits, and the ’ and _ characters. but it must begin
with a lowercase letter or the underscore character, and it may not the the

_all by itself.
In OCaml, sequences of characters from the infix operators, like
+, -, *, /, ... are also valid names. The normal prefix version is ob-

tained by enclosing them in parentheses. For example, the following code is
a proper entry for the Obfuscated ML contest. Don’t use this code in class.

# let (+) = ( * )

and (-) = (+)

and ( * ) = (/)

and (/) = (-);;
val + : int -> int -> int = <fun>
val - : int -> int -> int = <fun>
val * : int -> int -> int = <fun>
val / : int -> int -> int = <fun>
#5+4/1;;
- :1int = 15

Note that the * operator requires space within the parenthesis. This is
because of comment conventions: comments start with (* and end with *).

The redefinition of infix operators may make sense in some contexts. For
example, a program module that defines arithmetic over complex numbers
may wish to redefine the arithmetic operators. It is also sensible to add new
infix operators. For example, we may wish to have an infix operator for the
power construction.

# let ( ** ) x i = power i X;;
val ** : float -> int -> float = <fun>
# 10.0 ** 5;;

- : float = 100000
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Chapter 4

Basic Pattern Matching

One of the more powerful features of ML is that it uses pattern matching
to define functions by case analysis. Pattern matching is performed by the
match expression, which has the following general form.

match expr with
patt, -> expr,
| patt, -> expr,

| patt,, -> expr,

A pattern is an expression made of constants and variables. When the
pattern matches with an argument, the variables are bound to the corre-
sponding values in the argument.

For example, Fibonacci numbers can be defined succinctly using pattern
matching. Fibonacci numbers are defined inductively: fib0 =0, fib1 =1,
and for all other natural numbers i, fib i = fib(i - 1) + fib(i - 2).

# let rec fib i =
match i with
0->0
| 1 > 1
| 3 -> fib (3 - 2) + fib (J - 1;;
val fib : int -> int = <fun>

# fib 1;;
- 1int =1
# fib 2;;
- :int =1
# fib 3;;
- @ 1int = 2

25
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# fib 6;;
- : int = 8

In this code, the argument i is compared against the constants O and 1. If
either of these cases match, the return value is i. The final patternis the vari-
able j, which matches any argument. When this pattern is reached, j takes
on the value of the argument, and the body fib (j - 2) + fib (7 - 1)
computes the returned value.

Note that the variables in a pattern are binding occurrences unrelated to
any previous definition of the variable. For example, the following code pro-
duces a result you might not expect. The first case matches all expressions,
returning the value matched. The toploop issues warning for the second
and third cases.

# let zero = 0;;
# let one = 1;;
# let rec fib i =
match i with
zero -> zero

| one -> one

| 3 > fib (3 - 2) + fib (G - D;;
Warning: this match case is unused.
Warning: this match case is unused.
val fib : int -> int = <fun>

# fib 1;;

- int =1

# fib 10;;

- :1int = 10

# fib 2002;;

- : int = 2002

The general form of matching, where the function body is a match ex-
pression applied to the function argument, is quite common in ML pro-
grams. OCaml defines an equivalent syntactic form to handle this case,
using the function keyword (instead of fun). A function definition is
like a fun, where a single argument is used in a pattern match. The fib
definition using function is as follows.

# let rec fib = function
0->0

| 1 > 1

| i -> fib (i - 1) + fib (i - 2);;
val fib : int -> int = <fun>
# fib 1;;
- rint =1
# fib 6;;
- : int = 8
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Patterns can also be used with values having the other basic types, like
characters, strings, and Boolean values. In addition, multiple patterns with-
out variables can be used for a single body. For example, one way to check
for capital letters is with the following function definition.

# let 1is_uppercase = function

’A! | !B’ | ’C, | ,D’ | lE, | ,F’ | !G! | !H!
| !I! | ,J, | !K’ | ’L! | ’M’ | ’N! | !0! | lP!
| 2Q | RS T VW X
| ’Y! | ’z’ _>

true
| ¢ -—>

false;;
val is_uppercase : char -> bool = <fun>

# is_uppercase 'M’;;

- : bool

I

- : bool

is_uppercase ’'m

= true

= false

It is rather tedious to specify all the letters one at a time. OCaml also
allows pattern ranges c;..c2, where ¢ and c; are character constants.

# Tet is_uppercase = function
A’ ’Z’ -> true
| ¢ -> false;;
val is_uppercase : char -> bool
# is_uppercase 'M’;;

= <fun>

- : bool = true
# is_uppercase 'm’;;
- : bool = false

Note that the pattern variable ¢ in these functions acts as a “wildcard”
pattern to handle all non-uppercase characters. The variable itself is not
used in the body false. This is another commonly occurring structure,
and OCaml provides a special pattern for cases like these. The _ pattern (a
single underscore character) is a wildcard pattern that matches anything. It
is not a variable (so it can’t be used in an expression). The is_uppercase
function would normally be written this way.

# Tlet is_uppercase = function
A’ ’Z’ -> true
| _ -> false;;
val is_uppercase : char -> bool
# is_uppercase 'M’;;

= <fun>

- 1 bool = true
# is_uppercase 'm’;;
- : bool = false
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4.1 Incomplete matches

You might wonder about what happens if all the cases are not consid-
ered. For example, what happens if we leave off the default case in the
is_uppercase function?

# let is_uppercase = function
A’ .. 77 -> true;;
Characters 19-49:
Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:

a
val is_uppercase : char -> bool = <fun>

The OCaml compiler and toploop are verbose about inexhaustive pat-
terns. They warn when the pattern match is inexhaustive, and even suggest
a case that is not matched. An inexhaustive set of patterns is usually an
error—what would happen if we applied the is_uppercase function to a
non-uppercase character?

# is_uppercase 'M’;;

- : bool = true

# is_uppercase 'm’;;

Uncaught exception: Match_failure("", 19, 49)

Again, OCaml is fairly strict. In the case where the pattern does not
match, it raises an exception (we'll see more about exceptions in Chapter|[7).
In this case, the exception means that an error occurred during evaluation
(a pattern matching failure).

A word to the wise, heed the compiler warnings! The compiler generates
warnings for possible program errors. As you build and modify a program,
these warnings will help you find places in the program text that need work.
In some cases, you may be tempted to ignore the compiler. For example, in
the following function, we know that a complete match is not needed if the
is_odd function is always applied to nonnegative numbers.

# let is_odd i =
match i mod 2 with
0 -> false

| 1 -> true;;
Characters 18-69:
Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
2
val is_odd : int -> bool = <fun>
# is_odd 3;;
- : bool = true
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# is_odd 12;;
- : bool = false

However, do not ignore the warning! If you do, you will find that you
begin to ignore all the compiler warnings—both real and bogus. Eventually,
you will overlook real problems, and your program will become hard to
maintain. For now, you should add the default case that raises an exception
manually. The Invalid_argument exception is designed for this purpose.
It takes a string argument that identifies the name of the place where the
failure occurred. You can generate an exception with the raise construction.

# Tet is_odd i =
match i mod 2 with
0 -> false

| 1 -> true

| _ -> raise (Invalid_argument "is_odd");;
val is_odd : int -> bool = <fun>
# is_odd 3;;
- : bool = true
# is_odd (-1);;
Uncaught exception: Invalid_argument("is_odd")

4.2 Patterns are everywhere

It may not be obvious at this point, but patterns are used in all the binding
mechanisms, including the Tet and fun constructions. The general forms
are as follows.

let patt = expr
let name patt ... patt = expr
fun patt -> expr

These aren’t much use with constants because the pattern match will
always be inexhaustive (except for the () pattern). However, they will be
handy when we introduce tuples and records in the next chapter.

# let is_one = fun 1 -> true;;

Characters 13-26:

Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
0

val is_one : int -> bool = <fun>

# let is_one 1 = true;;

Characters 11-19:

Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
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0

val is_one : 1int -> bool = <fun>

# is_one 1;;

- : bool = true

# is_one 2;;

Uncaught exception: Match_failure("", 11, 19)
# let is_unit () = true;;

val is_unit : unit -> bool = <fun>

# is_unit O;;

- : bool = true



Chapter 5

Tuples, Lists, and
Polymorphism

In the chapters leading up to this one, we have seen simple expressions
involving numbers, characters, strings, functions and variables. This lan-
guage is already Turing complete—we can code arbitrary data types using
numbers and functions. Of course, in practice, this would not only be in-
efficient, it would also make it very hard to understand our programs. For
efficient, and readable, data structure implementations we need aggregate
types.

OCaml provides a rich set of aggregate types, including tuples, lists,
disjoint unions (also called tagged unions, or variant records), records, and
arrays. In this chapter, we’ll look at the simplest part: tuples and lists. We’ll
discuss unions in Chapter[6] and we’ll leave the remaining types for Chapter
when we introduce side-effects.

5.1 Polymorphism

At this point, it is also appropriate to introduce polymorphism. The ML
languages provide parametric polymorphism. That is, types may be param-
eterized by type variables. For example, the identity function in ML can be
expressed with a single function.

# let identity x = x
val identity : ’a ->
# identity 1;;

D int =1

identity "Hello";;
: string = "Hello"

a = <fun>

F*
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Type variables are lowercase identifiers preceded by a single quote
). A type variable represents an arbitrary type. The typing
identity : ’a -> ’asays thatthe identity function takes an argument
of some arbitrary type ’a and returns a value of the same type ’a. If the
identity function is applied to an int, then it returns an 1int; if it is ap-
plied to a string, then it returns a string. The identity function can
even be applied to function arguments.

# let succ i =1 + 1;;

val succ : int -> int = <fun>
# identity succ;;

- :1int -> int = <fun>

# (identity succ) 2;;

- 11int =3

In this case, the (identity succ) expression returns the succ function
itself, which can be applied to 2 to return 3.

5.1.1 Value restriction

What happens if we apply the identity to a polymorphic function type?

# let identity’ = identity identity;;
val identity’ : ’_a -> '_a = <fun>

# identity’ 1;;

- int =1

# identity’;;

- :int -> int = <fun>

# identity’ "Hello";;

Characters 10-17:

This expression has type string

but is here used with type int

This doesn’t quite work as we expect. Note the type assignment
identity’ ’_a -> ’_a. The type variables ’_a are now preceded by
an underscore. These type variables specify that the identity’ function
takes an argument of some type, and returns a value of the same type. This
is a form of delayed polymorphism. When we apply the identity’ function
to a number, the type ’_a is assigned to be int; the identity’ function
can no longer be applied to a string.

This behavior is due to the value restriction: for an expression to be truly
polymorphic, it must be a value. Values are immutable expressions that
evaluate to themselves. For example, numbers and characters are values.
Functions are also values. Function applications, like identity identity
are not values, because they can be simplified (the identity identity
expression evaluates to identity).
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The normal way to get around the value restriction is to use eta-
expansion, which is the technical term for adding extra arguments to the
function. We know that identity’ is a function; we can add its argument
explicitly.

# Tet identity’ x = (identity identity) x;;
val identity’ : ’a -> ’a = <fun>

# didentity’ 1;;

- rint =1

# identity’ "Hello";;

- : string = "Hello"

The new version of identity’ computes the same value, but now it is
properly polymorphic. Why does OCaml have this restriction? It probably
seems silly, but the value restriction is a simple way to maintain correct
typing in the presence of side-effects; it would not be necessary in a purely
functional language. We’ll revisit this in Chapter

5.1.2 Comparison with other languages

Polymorphism can be a powerful tool. In ML, a single identity function can
be defined that works on all types. In a non-polymorphic language like C, a
separate identity function would have to be defined for each type.

int int_identity(int 1)
{

}

return 1i;

struct complex { float real; float imag; };

struct complex complex_identity(struct complex x)
{
return Xx;

}

Another kind of polymorphism is overloading (also called ad-hoc poly-
morphism). Overloading allows several functions to have the same name
but different types. When that function is applied, the compiler selects the
appropriate function by checking the type of the arguments. For example,
in Java we could define a class that includes several definitions of addition
for different types (note that the + operator is already overloaded).

class Adder {
static int Add(int i, int j) {
return i + j;

}



34 CHAPTER 5. TUPLES, LISTS, AND POLYMORPHISM

static float Add(float x, float y) {
return x + y;

}

static String Add(String sl, String s2) {
return sl.concat(s2);

}

The expression Adder.Add(5, 7) would evaluate to 12, while the ex-
pression Adder.Add("Hello ", "world") would evaluate to the string
"Hello world".

OCaml does not provide overloading. There are probably two main rea-
sons. One is technical: it is hard to provide both type inference and over-
loading at the same time. For example, suppose the + function were over-
loaded to work both on integers and floating-point values. What would be
the type of the following add function? Would it be int -> int -> int,
or float -> float -> float?

Tet add x y =
X +Y;5s

The best solution would probably to have the compiler produce two in-
stances of the add function, one for integers and another for floating point
values. This complicates the compiler, and with a sufficiently rich type sys-
tem, type inference would become undecidable. That would be a problem.

The second reason for the omission is that overloading can make it more
difficult to understand programs. It may not be obvious by looking at the
program text which one of a function’s instances is being called, and there
is no way for a compiler to check if all the function’s instances do “similar”
thingdl]

5.2 Tuples

Tuples are the simplest aggregate type. They correspond to the ordered
tuples you have seen in mathematics, or set theory. A tuple is a collection of
values of arbitrary types. The syntax for a tuple is a sequence of expressions
separated by commas. For example, the following tuple is a pair containing
a number and a string.

# let p = 1, "Hello";;
val p : int * string = 1, "Hello"

1 The second reason is weaker. Properly used, overloading reduces namespace clutter by
grouping similar functions under the same name. True, overloading is grounds for obfusca-
tion, but OCaml is already ripe for obfuscation by allowing arithmetic functions like + to be
redefined!
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The syntax for the type of a tuple is a * delimited list of the types of the
components. In this case, the type of the pair is int * string.

Tuples can be deconstructed using pattern matching, with any of the pat-
tern matching constructs like Tet, match, fun, or function. For example,
to recover the parts of the pair in the variables x and y, we might use a et
form.

# let x, y = p;;
val x : int =1
val y : string = "Hello"

The built-in functions fst and snd return the components of a pair,
defined as follows.

# Tet fst (x, ) = x;;

val fst : ’a * ’b -> "a = <fun>
# let snd (_, y) =vV;;

val snd : ’a * ’b -> b = <fun>
# fst p;;

- 1int =1

# snd p;;

- : string = "Hello"

Tuple patterns in a function argument must be enclosed in parentheses.
Note that these functions are polymorphic. The fst and snd functions can
be applied to a pair of any type "a * ’b; fst returns a value of type ’a,
and snd returns a value of type ’b.

There are no similar built-in functions for tuples with more than two
elements, but they can be defined.

# let t = 1, "Hello", 2.7;;
val t : int * string * float = 1, "Hello", 2.7

# let fst3 (x, _, ) = X;;

val fst3 : ’a * 'b * 'c -> ’a = <fun>
# fst3 t;;

- rint =1

Note also that the pattern assignment is simultaneous. The following
expression swaps the values of x and y.

# let x = 1;;

val x : int =1

# let y = "Hello";;

val y : string = "Hello"
# let X, vy =y, X;;

val x : string = "Hello"
val y : int =1
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Since the components of a tuple are unnamed, tuples are most appropri-
ate if they have a small number of well-defined components. For example,
tuples would be an appropriate way of defining Cartesian coordinates.

# let make_coord x y = X, y;;

val make_coord : ’a -> ’b -> ’a * b = <fun>
# let x_of_coord = fst;;

val x_of_coord : ’a * b -> ’a = <fun>

# let y_of_coord = snd;;

val y_of_coord : ’a * b -> ’b = <fun>

However, it would be awkward to use tuples for defining database en-
tries, like the following. For that purpose, records would be more appropri-
ate. Records are defined in Chapter|[3]

# (* Name, Height, Phone, Salary ¥*)
let jason = ("Jason", 6.25, "626-395-6568", 50.0);;

val jason : string * float * string * float =

# let name_of_entry (name, _, _, _) = name;;

val name_of_entry : ’a * b * ’c * ’d -> ’a = <fun>
"Jason", 6.25, "626-395-6568", 50

# name_of_entry jason;;

- : string = "Jason"

5.3 Lists

Lists are also used extensively in OCaml programs. A list contains a se-
quence of values of the same type. There are two constructors: the []
expression is the empty list, and the e;::e; expression is the cons of expres-
sion e; onto the list e;.

# Tet T = "Hello"™ :: "World" :: [];;
val 1 : string list = ["Hello"; "World"]

The bracket syntax [e;;...; e, ] is an alternate syntax for the list contain-
ing the values computed by ey,...,e;,.

The syntax for the type of a list with elements of type tis t 1list. The
Tist type is a of a parameterized type. An int 1ist is a list containing
integers, a string Tistis alist containing strings, and an a Tistisalist
containing elements of some type ’a (but all the elements have to have the
same type).

Lists can be deconstructed using pattern matching. For example, here is
a function that adds up all the numbers in an int Tist.

# let rec sum = function
(] >0
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[ i :: 1 => 1 + sum 1;;
val sum : int 1list -> int = <fun>
# sum [1; 2; 3; 41;;
- :1int = 10

These functions can also be polymorphic. The function to check if a
value x is in a list 1 could be defined as follows.

# let rec mem x 1 =

match 1 with

[ -> false
|y :: 1T >x=vy || mem x 1;;
val mem : ’a -> ’a 1list -> bool = <fun>
# mem 5 [1; 7; 31;;
- : bool = false
# mem "do" ["I’m"; "afraid"; "I"; "can’t";
"do"; "that"; "Dave"];;

- : bool = true

This function takes an argument of any type ’a, and checks if the ele-
ment is in the ’a Tist.
The standard map function, List.map, can be defined as follows.

# let rec map f = function
[l -> [1
| x 12T > fx ::map f 1;;
val map : (Ca -> 'b) -> ’a Tist -> ’b Tist = <fun>
# map succ [1; 2; 3; 4];;
- :int list = [2; 3; 4; 5]

The map function takes a function of type a -> ’b (this argument func-
tion takes a value of type ’a and returns a value of type ’b), and a list
containing elements of type ’a. It returns a b Tist. Equivalently,

map f [vi;...;vn] = [f vi;...5.f vl

Lists are commonly used to represent sets of values or key-value rela-
tionships. The List library contains many list functions. The List.assoc
function returns the value for a key in a list.

# let entry =
[("name", "Jason");
("height", "6’ 3°°");
("phone", "626-395-6568");
("salary™, "$50")1;;
val entry : (string * string) list =
["name", "Jason"; "height", "6’ 3’’";
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"phone", "626-345-9692"; "salary", "$50"]
# List.assoc "phone" entry;;
- : string = "626-395-6568"

Note that the comma separates the elements of the pairs in the list, and
the semicolon separates the items of the list.
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Unions

Disjoint unions, also called tagged unions or variant records, are ubig-
uitous in OCaml programs. A disjoint union represents a set of cases of a
particular type. For example, we may say that a binary tree contains nodes
that are either interior nodes or leaves. Suppose that the interior nodes have
a label of type ’a. In OCaml, this would be expressed as a type definition
using the type keyword. The type is recursively defined, and it contains a
type parameter ’a for the type of elements.

# type ’a btree

Node of ’a * ’a btree * ’a btree
| Leaf;;
type 'a btree = | Node of ’a * ’a btree * ’a btree | Leaf

The name of the type is btree, and the type parameterization uses pre-
fix notation ’a btree. The cases are separated by a vertical dash (the |
character). Each case has a name and an optional set of values. The name
must begin with an uppercase letter. In this case, the type of the definition
is ’a btree, and the interior node Node has three values: a label of type
’a, a left child of type a btree, and a right child of type ’a btree.

The names (like Node and Leaf) are called constructors. Con-
structors can be viewed as functions that inject values into the dis-
joint union. Thus, the Node constructor would be a function of type
(’a * ’a btree * ’a btree) -> ’a btree. For technical reasons,
OCaml does not allow constructors with arguments to be used as values.

# Leaf;;

- ’a btree = Leaf

# Node (1, Leaf, Leaf);;

int btree = Node (1, Leaf, Leaf)
Node;;

3
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The constructor Node expects 3 argument(s),
but is here applied to 0 argument(s)

A value with a union type is a value having one of the cases. The value
can be recovered through pattern matching. For example, a function that
counts the number of interior nodes in a value of type ’a btree would be
defined as follows.

# let rec cardinality = function
Leaf -> 0
| Node (_, Teft, right) ->
cardinality left + cardinality right + 1;;

val cardinality : ’a btree -> int = <fun>
# cardinality (Node (1, Node (2, Leaf, Leaf), Leaf));;
- tint =2

6.1 Unbalanced binary trees

To see how this works, lets build a simple data structure for unbalanced
binary trees that represent sets of values of type ’a.

The empty set is just a Leaf. To add an element to a set s, we create a
new Node with a Leaf as a left-child, and s as the right child.

# let empty = Leaf;;

val empty : ’a btree = Leaf

# let insert x s = Node (x, Leaf, s);;

val insert : ’a -> ’a btree -> ’a btree = <fun>
# let rec set_of_list = function

[1 -> empty
| x :: 1 -> insert x (set_of_Tlist 1);;
val set_of_list : ’a list -> ’a btree = <fun>

# let s = set_of_Tist [3; 5; 7; 11; 13]1;;
val s : int btree =
Node
(3, Leaf,
Node (5, Leaf,
Node (7, Leaf,
Node (11, Leaf, Node (13, Leaf, Leaf)))))

The membership function is defined by induction on the tree: an element
x is a member of a tree iff the tree is a Node and x is the label, or x is in
the left or right subtrees.

# let rec mem x = function
Leaf -> false
| Node (y, Tleft, right) ->
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X =1y || mem x Teft || mem x right;;
val mem : ’a -> ’a btree -> bool = <fun>
# mem 11 s;;
- : bool = true
# mem 12 s;;

- : bool = false

6.2 Unbalanced, ordered, binary trees

One problem with the unbalanced tree is that the complexity of the mem-
bership operation is O (n), where n is cardinality of the set. We can improve
this slightly by ordering the nodes in the tree. The invariant we maintain is
the following: for any interior node Node (x, Teft, right), all the labels
in the left child are smaller than x, and all the labels in the right child are
larger than x. To maintain this invariant, we need to modify the insertion
function.

# let rec insert x = function
Leaf -> Node (x, Leaf, Leaf)
| Node (y, Tleft, right) ->
if x < y then
Node (y, insert x left, right)
else if x > y then
Node (y, left, insert x right)
else
Node (y, left, right);;
val insert : ’a -> ’a btree -> ’a btree = <fun>
# let rec set_of_list = function

[ -> empty
| x :: 1T -> insert x (set_of_list 1);;
val set_of_list : ’a list -> ’a btree = <fun>

# let s = set_of_1ist [7; 5; 9; 11; 3]1;;
val s : 1int btree =
Node
(3, Leaf,
Node (11,
Node (9,
Node (5, Leaf, Node (7, Leaf, Leaf)), Leaf), Leaf))

Note that this insertion function does not build balanced trees. If ele-
ments are inserted in order, the tree will be maximally unbalanced, with all
the elements inserted along the right branch.

For the membership function, we can take advantage of the set ordering
during the search.

# let rec mem x = function
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Leaf -> false
| Node (y, Tleft, right) ->
if x < y then
mem x left
else if x > y then
mem X right
else (* x =y *)

true;;
val mem : ’a -> ’a btree -> bool = <fun>
# mem 5 s;;
- : bool = true
# mem 9 s;;

- : bool = true
# mem 12 s;;
- : bool = false

The complexity of this membership function is O(l) where [ is the max-
imal depth of the tree. Since the insert function does not guarantee bal-
ancing, the complexity is still O (n), worst case.

6.3 Balanced red-black trees

For a more advanced example of pattern matching on unions, consider the
implementation of balanced trees as red-black trees. This section may be
skipped by the reader who is already familiar with advanced pattern match-
ing.

We’ll use a functional implementation of red-black trees due to Chris
Okasaki [5]. Red-black trees add a label, either Red or BTack to each of the
interior nodes. Several new invariants are maintained.

1. Every leaf is colored black.
2. All children of every red node are black.

3. Every path from the root to a leaf has the same number of black nodes
as every other path.

4. The root is always black.

These invariants guarantee the balancing. Since all the children of a red
node are black, and each path from the root to a leaf has the same number
of black nodes, the longest path is at most twice as long as the shortest
path.

The type definitions are similar to the unbalanced binary tree; we just
need to add a red/black label.
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type color =
Red
| BTack

type ’'a btree =
Node of color * ’a btree *
| Leaf

a * ’a btree

The membership function also has to be redefined for the new type.

Tet rec mem x = function
Leaf -> false
| Node (_, a, y, b) ->
if x <y then mem x a
else if x > y then mem x b
else true

The insert function must maintain the invariants during insertion. This
can be done in two parts. First find the location where the node is to be
inserted. If possible, add the new node with a Red label because this would
preserve invariant 3. This may, however, violate invariant 2 because the
new Red node may have a Red parent. If this happens, the balance function
migrates the Red label upward in the tree.

# Tet balance = function
Black, Node (Red, Node (Red, a, x, b), y, @, z, d >
Node (Red, Node (Black, a, x, b), y, Node (Black, c,
| Black, Node (Red, a, x, Node (Red, b, y, ©)), z, d ->
Node (Red, Node (Black, a, x, b), y, Node (Black, c,
| Black, a, x, Node (Red, Node (Red, b, y, ), z, d) ->
Node (Red, Node (Black, a, x, b), y, Node (Black, c,
| Black, a, x, Node (Red, b, y, Node (Red, c, z, d)) ->
Node (Red, Node (Black, a, x, b), y, Node (Black, c,
| a, b, c, d ->
Node (a, b, c, d)

let insert x s =
let rec ins = function
Leaf -> Node (Red, Leaf, x, Leaf)
| Node (color, a, y, b) as s ->
if x < y then balance (color, ins a, y, b)
else if x > y then balance (color, a, y, ins b)
else s
in
match ins s with (* guaranteed to be non-empty *)
Node (_, a, y, b) -> Node (Black, a, y, b)
| Leaf -> raise (Invalid_argument "insert");;

d))
d)
d))
d))
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val balance : color * ’a btree * a * ’a btree -> ’a btree = <fun>
val insert : ’a -> ’a btree -> ’a btree = <fun>

Note the use of nested patterns in the balance function. The balance
function takes a 4-tuple, with a color, two btrees, and an element, and
it splits the analysis into five cases: four of the cases are for violations of
invariant 2 (nested Red nodes), and the final case is the case where the tree
does not need rebalancing.

Since the longest path from the root is at most twice as long as the
shortest path, the depth of the tree is O(log n). The balance function
takes constant time. This means that the insert and mem functions both
take time O(log n).

# let empty = Leaf;;
val empty : ’a btree = Leaf
# let rec set_of_Tlist = function

[] -> empty
| x :: 1 -> insert x (set_of_Tlist 1);;
val set_of_Tlist : ’a list -> ’a btree = <fun>

# let s = set_of_1list [3; 9; 5; 7; 11];;
val s : int btree =
Node
(Black, Node (Black, Node (Red, Leaf, 3, Leaf), 5, Leaf), 7,
Node (Black, Node (Red, Leaf, 9, Leaf), 11, Leaf))
# mem 5 s;;
: bool = true
mem 6 s;;
- : bool = false

B3

6.4 Some common built-in unions

A few of the types we have already seen are defined as unions. The built-
in Boolean type is defined as a union (the true and false keywords are
treated as capitalized identifiers).

# type bool =
true
| false
type bool = | true | false

The list type is similar: once again, the compiler treats the [] and ::
identifiers as capitalized identifierd!]

L At the time of writing using OCaml 2.04, this definition was accepted literally. In OCaml
3.04 this usage is deprecated, and the [] produces a syntax error.
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# type ’a Tist =[] | :: of ’a * ’a Tist;;
type ’a Tist = | [1 | :: of ’a * ’a 1ist

Although it is periodically suggested on the OCaml mailing list, OCaml
does not have a NIL value that can be assigned to a variable of any type.
Instead, the built-in "a option type is used in this case.

# type ’a option =
None
| Some of ’a;;
type ’'a option = | None | Some of ’a

The None case is intended to represent a NIL value, while the Some case
handles non-default values.
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Chapter 7

Exceptions

Exceptions are used in OCaml as a control mechanism, either to signal
errors, or to control the flow of execution. When an exception is raised,
the current execution is aborted, and control is thrown to the most recently
entered active exception handler, which may choose to handle the exception,
or pass it through to the next exception handler.

Exceptions were designed as a more elegant alternative to explicit error
handling in more traditional languages. In Unix/C, for example, most sys-
tem calls return -1 on failure, and 0 on success. System code tends to be
cluttered with explicit error handling code that obscures the intended oper-
ation of the code. In the OCaml Unix module, the system call stubs raise an
exception on failure, allowing the use of a single error handler for a block
of code. In some ways, this is like the setjmp/Tongjmp interface in C, but
OCaml exceptions are safe.

To see how this works, consider the List.assoc function, which is de-
fined as follows.

# let rec assoc key = function
(k, v) 21 —>
if k = key then
\%
else
assoc key 1
[ [1 —>
raise Not_found;;
val assoc : ’a -> (Ca * ’b) Tist -> b = <fun>
# let 1T = [1, "Hello"™; 2, "World"];;
val 1 : (int * string) Tist = [1, "Hello"; 2, "World"]
# assoc 2 1;;
- : string = "World"
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# assoc 3 1;;
Uncaught exception: Not_found

# "Hello" ~ assoc 2 1;;
- : string = "HelloWorld"
# "Hello" = assoc 3 1;;

Uncaught exception: Not_found

In the first case, assoc 2 1, the key is found in the list and its value is
returned. In the second case, assoc 3 1, the key 3 does not exist in the
list, and the exception Not_found is raised. There is no explicit exception
handler, and the toploop default handler is invoked.

Exceptions are declared with the exception keyword, and their syntax
has the same form as a constructor declaration in a union type. Exceptions
are raised with the raise function.

# exception Abort of int * string;;

exception Abort of int * string

# raise (Abort (1, "GNU is not Unix"));;
Uncaught exception: Abort(l, "GNU 1is not Unix")

Exception handlers have the same form as a match pattern match, using
the try keyword. The syntax is as follows:

try ewith
p-1 > el
| p2 -> e2
|pn -> en

First, e is evaluated. If it does not raise an exception, its value is re-
turned as the result of the try statement. Otherwise, if an exception is
raised during evaluation of e, the exception is matched against the patterns
pi,...,pn. If the first pattern the exception matches is p;, the expression e;
is evaluated and returned as the result. Otherwise, if no pattern matches,
the exception is propagated to the next exception handler.

# try "Hello" " assoc 2 1 with
Abort (i, s) -> s
| Not_found -> "Not_found";;
: string = "HelloWorld"

# try "Hello" " assoc 3 1 with
Abort (i, s) -> s
| Not_found -> "Not_found";;
- : string = "Not_found"
# try "Hello" " assoc 3 1 with

Abort (i, s) -> s;;
Uncaught exception: Not_found
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Exceptions are also used to manage control flow. For example, consider
the binary trees in the previous chapter.

# type ’a btree =

Node of ’a btree * ’a * ’a btree
| Leaf;;
type 'a btree = | Node of ’a btree * ’a * ’a btree | Leaf

Suppose we wish to build a replace function that replaces a value in the
set. The expression replace x y s should replace value x with y in tree
s, or raise the exception Not_found if the value does not exist.

# let rec replace x y = function
Leaf -> raise Not_found
| Node (left, z, right) ->
Tet left, mod_Tleft =
try replace x y left, true with
Not_found -> left, false
in
let right, mod_right =
try replace x y right, true with
Not_found -> right, false
in
if z = x then
Node (left, y, right)
else if mod_left || mod_right then
Node (left, x, right)
else
raise Not_found;;
val replace : ’a -> ’a -> ’a btree -> ’a btree = <fun>

In this function, the left and right subtrees are recursively modified. The
mod_Teft and mod_right flags are set iff the corresponding branches were
modified. If neither branch is modified, the Not_found exception is raised.
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Chapter 8

Records, Arrays, and
Side-Effects

In this chapter we discuss the remaining data types, all of which allow
side-effects. A record can be viewed as a tuple with labeled fields. An array
is a fixed-size vector of items with constant time access to each element.
There are operations to modify some of the fields in a record, and any of
the elements in an array.

8.1 Records

A record is a labeled collection of values of arbitrary types. The syntax for
a record type is a set of field type definitions surrounded by braces, and
separated by semicolons. Fields are declared as Tabel : type, where the
label is an identifier that must begin with a lowercase letter or an under-
score. For example, the following record redefines the database entry from

Chapter

# type db_entry =
{ name : string;
height : float;
phone : string;
salary : float
}is
type db_entry = { name: string; height: float;
phone: string; salary: float }

The syntax for a value is similar to the type declaration, but the fields
are defined as Tabel = expr. Here is an example database entry.
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# let jason
{ name = "Jason";
height = 6.25;
phone = "626-395-6568";
salary = 50.0
1
val jason : db_entry =
{name="Jason"; height=6.25;
phone="626-395-6568"; salary=50}

There are two ways to access the fields in a record. The projection op-
eration r.1 returns the field labeled 1 in record r.

# jason.height;;

- : float = 6.25

# jason.phone;;

- : string = "626-395-6568"

Pattern matching can also be used to access the fields of a record. The
syntax for a pattern is like a record value, but the fields contain a label and
apattern Tabel = patt. Not all of the fields have to be included. Note that
the binding occurrences of the variables n and h occur to the right of the
equality symbol in their fields.

# let { name = n; height = h } = jason;;
val n : string = "Jason"
val h : float = 6.25

There is a functional update operation that produces a copy of a record
with new values for the specified fields. The syntax for functional update
uses the with keyword in a record definition.

# let dave = { jason with name = "Dave"; height = 5.9 };;
val dave : db_entry =
{name="Dave"; height=5.9; phone="626-395-6568"; salary=50}
# jason;;
- : db_entry = {name="Jason"; height=6.25;
phone="626-395-6568"; salary=50}

8.1.1 Imperative record updates

Record fields can also be modified by assignment, but only if the record field
is declared as mutable. The syntax for a mutable field uses the mutable
keyword before the field label. For example, if we wanted to allow salaries
to be modified, we would re-declare the record entry as follows.
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# type db_entry =
{ name : string;
height : float;
phone : string;
mutable salary : float
}is
type db_entry =
{ name: string;
height: float;
phone: string;
mutable salary: float }
# let jason =
{ name = "Jason";
height = 6.25;
phone = "626-395-6568";
salary = 50.0
1
val jason : db_entry =
{name="Jason"; height=6.25; phone="626-395-6568"; salary=50}

The syntax for a field update is r.label <- expr. For example, if we
want to give jason a raise, we would use the following statement.

# jason.salary <- 150.0;;

- unit = O

# jason;;

- : db_entry = {name="Jason"; height=6.25;
phone="626-395-6568"; salary=150}

Note that the assignment statement itself returns the canonical unit
value (). That is, it doesn’t return a useful value, unlike the functional
update. A functional update creates a completely new copy of a record;
assignments to the copies will be independent.

# Tet dave = { jason with name = "Dave" };;
val dave : db_entry =

{name="Dave"; height=6.25; phone="626-395-6568"; salary=150}
# dave.salary <- 180.0;;

-t unit =0

# dave;;

- : db_entry = {name="Dave"; height=6.25;
phone="626-395-6568"; salary=180}

# jason;;

- : db_entry = {name="Jason"; height=6.25;

phone="626-395-6568"; salary=150}
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8.1.2 Field label namespace

One important point: the namespace for toplevel record field labels is flat.
This is important if you intend to declare records with the same field names.
If you do, the original labels will be lost! For example, consider the following
sequence.

# type recl { name : string; height : float };;
type recl = { name: string; height: float }

# let jason = { name = "Jason"; height = 6.25 };;
val jason : recl = {name="Jason"; height=6.25}

# type rec2

= { name : string; phone : string };;
type rec2 = { n

ame: string; phone: string }

# let dave = { name = "Dave"; phone = "626-395-6568" };;
val dave : rec2 = {name="Dave"; phone="626-395-6568"}

# jason.name;;
Characters 0-5:
This expression has type recl but is here used with type rec2

# dave.name;;
- @ string = "Dave"

# let bob = { name = "Bob"; height = 5.75 };;
Characters 10-41:

The label height belongs to the type recl
but is here mixed with labels of type rec2

In this case, the name field was redefined. At this point, the original
recl.name label is lost, making it impossible to access the name field in a
value of type recl, and impossible to construct new values of type recl.
It is, however, permissible to use the same label names in separate files, as
we will see in Chapter

8.2 References

Variables are never mutable. However, reference cells are common enough
in OCaml programs that a special form is defined just for this case. Refer-
ence cells are created with the ref function.

# let i = ref 1;;
val i : int ref = {contents=1}
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The built-in type *a ref is defined using a regular record definition; the
normal operations can be used on this record.

type 'a ref = { mutable contents : ’a }

Dereferencing uses the ! operator, and assignment uses the := infix
operator.

# 1i;;

- :int = 1;;
#1 1= 17;;
-t unit = 0O
# 1i;;

- :1int = 17

Don’t get confused with the ! operator in C here. The following code
can be confusing.

# let flag = ref true;;

val flag : bool ref = {contents=true}
# if !flag then 1 else 2;;

- :int =1

You may be tempted toread if !flag then ... as testing if the flag
is false. This is not the case; the ! operator is more like the * operator in C.

8.2.1 Value restriction

As we mentioned in Section [5.1.1} mutability and side-effects interact with
type inference. For example, consider a “one-shot” function that saves a
value on its first call, and returns that value on all future calls. This function
is not properly polymorphic because it contains a mutable field. We can
illustrate this using a single variable.

# let x = ref None;;
val x : ’_a option ref = {contents=None}
# let one_shot y =

match !x with

None ->
X := Some y;
y
| Some z ->
Z5,

val one_shot : a -> '_a = <fun>
# one_shot 1;;

- :int =1

# one_shot;;
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val one_shot : int -> int = <fun>

# one_shot 2;;

- int =1

# one_shot "Hello";;

Characters 9-16:

This expression has type string but is here used with type int

The value restriction requires that polymorphism be restricted to values.
Values include functions, constants, constructors with fields that are values,
and immutable records with fields that are values. A function application is
not a value, and arecord with mutable fields is not a value. By this definition,
the x and one_shot variables cannot be polymorphic, as the type constants
’ _a indicate.

8.3 Arrays and strings

Arrays are fixed-size vectors of values. All of the values must have the
same type. The fields in the array can be accessed and modified in constant
time. Arrays can be created with the [ |e;;...;en| ] syntax, which creates an
array of length » initialized with the values computed from the expressions
€1y...,6n.

# let a = [I1; 3; 5; 7115,
val a : int array = [|1; 3; 5; 7]]

Fields can be accessed with the a. (i) construction. Array indices start
from 0. Arrays are bounds-checked.

# a.(0);;
- int =1
# a.(1);;
- :1int = 3
# a.(5);;

Uncaught exception: Invalid_argument("Array.get")

Fields are updated with the a. (i) <- e assignment statement.

H*

a.(2) <- 9;;

:unit = O

a;;

:dint array = [|1; 3; 9; 71]

The Array library module defines additional functions on arrays. Arrays
of arbitrary length can be created with the Array.create function, which
requires a length and initializer argument. The Array.length function
returns the number of elements in the array.
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# let a = Array.create 10 1;;

val a : int array = [|1; 1; 1; 1; 1; 1; 1; 1; 1; 1|]
# Array.length a;;

- :1int = 10

The Array.b1it function can be used to copy elements destructively
from one array to another. The b11t function requires five arguments: the
source array, a starting offset into the array, the destination array, a starting
offset into the destination array, and the number of elements to copy.

# Array.blit [| 3; 4; 5; 6 |] 1 a 3 2;;

- unit = O

# aj;;

- :int array = [|1; 1; 1; 4; 5; 1; 1; 1; 1; 11]

In OCaml, strings are a lot like packed arrays of characters. The access
and update operations use the syntax s.[i] and s.[i] <- c.

# let s = "Jason";;

val s : string = "Jason"
# s.[2];;

- : char = ’s’

# s.[3] <- 'y’;;

- runit =0

# s;;

- : string = "Jasyn"

The String module defines additional functions, including the
String.length and String.b1it functions that parallel the correspond-
ing Array operations. The String.create function does not require an
initializer. It creates a string with arbitrary contents.

# String.create 10;;

- : string = "\000\011\000\000,\200\027@\000\000"

# String.create 10;;

- : string = "\196\181\027@\001\000\000\000\000\000"

8.4 Sequential execution and looping

Sequential execution is not useful in a functional language—why compute
a value and discard it? In an imperative language, including a language like
OCaml, sequential execution is used to compute by side-effect.

Sequential execution is defined using the semicolon operator. The ex-
pression ej;e»> evaluates e;, discards the result (e; probably has a side-
effect), and evaluates e;. Note that the semicolon is a separator (as in
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Pascal), not a terminator (as in C). The compiler produces a warning if ex-
pression e; does not have type unit. As usual, heed these warnings! The
ignore : ’a -> unit function can be used if you really want to discard
a non-unit value.

There are two kinds of loops in OCaml, a for loop, and a while loop.
The wh1ile loop is simpler; we’ll start there.

8.4.1 while loops

The while loop has the syntax while e; do e» done. The expression e;
must have type bool. When a while loop is evaluated, the expression e;
is evaluated first. If it is false, the while loop terminates. Otherwise, e is
evaluated, and the loop is evaluated again.

Here is an example to check if a value x is in an array a.

# let array_mem x a =
Tet Ten = Array.length a in
let flag = ref false in
let i = ref 0 1in
while !flag = false & !i < Ten do
if a.(!i) = x then
flag := true;
ii=1+1
done;
1flag;;
val array_mem : ’a -> ’a array -> bool = <fun>
# array_mem 1 [| 3; 5; 1; 6]];;
- : bool = true
# array_mem 7 [| 3; 5; 1; 6]];;
- : bool = false

8.4.2 for loop

The for loop iterates over a finite range of integers. There are two forms,
one to count up, and one to count down. The syntax of these two operations
is as follows.

for v = e; to e» do e3 done
for v = e; downto e» do e3 done

The for loops first evaluate e; and ep, which must have type int. The
to form evaluates the body e3 for values of v counting up from e; to ey,
and the downto form evaluates the body for values counting down from e;
to e». Note that the final value e; is included in the evaluation.

The following code is a simpler expression for computing membership
in an array (although it is somewhat less efficient).
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# let array_mem x a =

let flag = ref false in
for i = 0 to Array.length a - 1 do
if a.(i) = x then
flag := true
done;
1flag;;

val array_mem : ’a -> ’a array -> bool = <fun>
# array_mem 1 [| 3; 5; 1; 6]];;

- : bool = true

# array_mem 7 [| 3; 5; 1; 6]];;

- : bool = false
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Chapter 9

Input and Output

The 1/0 library in OCaml is fairly expressive, including a Unix library
that implements most of the portable Unix system calls. In this chapter,
we’ll cover many of the standard built-in I/0 functions.

The I/0 library uses two data types: the in_channel is the type of I/0
channels from which characters can be read, and the out_channel is an /0
channel to which characters can be written. I/O channels may represent
files, communication channels, or some other device; the exact operation
depends on the context.

At program startup, there are three channels open, corresponding to the
standard file descriptors in Unix.

val stdin : in_channel
val stdout : out_channel
val stderr : out_channel

9.1 File opening and closing

There are two functions to open an output file: the open_out function opens
a file for writing text data, and the open_out_bin opens a file for writing
binary data. These two functions are identical on a Unix system. On a Macin-
tosh or Windows system, the open_out function performs line termination
translation (why do all these systems use different line terminators?), while
the open_out_bin function writes the data exactly as written. These func-
tions raise the Sys_error exception if the file can’t be opened; otherwise
they return an out_channel.

A file can be opened for reading with the functions open_in and
open_in_bin.

val open_out : string -> out_channel
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val open_out_bin : string -> out_channel
val open_in : string -> in_channel
val open_in_bin : string -> in_channel

The open_out_gen and open_in_gen functions can be used to perform
more sophisticated file opening. The function requires an argument of type
open_fTag that describes exactly how to open the file.

type open_flag =
Open_rdonly | Open_wronly | Open_append
| Open_creat | Open_trunc | Open_excl
| Open_binary | Open_text | Open_nonblock

These opening modes have the following interpretation.

Open_rdonly open for reading

Open_wronly open for writing

Open_append open for appending

Open_creat create the file if it does not exist
Open_trunc empty the file if it already exists

Open_excl fail if the file already exists

Open_binary open in binary mode (no conversion)
Open_text open in text mode (may perform conversions)

Open_nonblock open in non-blocking mode

The open_in_gen and open_out_gen functions have types

val open_in_gen : open_flag 1list -> int -> string -> in_channel.
val open_out_gen : open_flag list -> int -> string -> out_channel.

The open_flag 1ist describe how to open the file, the int argument de-
scribes the Unix mode to apply to the file if the file is created, and the string
argument is the name of the file.

The closing operations close_out and close_in close the channels. If
you forget to close a file, the garbage collector will eventually close it for
you. However, it is good practice to close the channel manually when you
are done with it.

val close_out : out_channel -> unit
val close_in : in_channel -> unit
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9.2 Writing and reading values on a channel

There are several functions for writing values to an out_channel.
The output_char writes a single character to the channel, and the
output_string writes all the characters in a string to the channel. The
output function can be used to write part of a string to the channel; the int
arguments are the offset into the string, and the length of the substring.

val output_char : out_channel -> char -> unit
val output_string : out_channel -> string -> unit
val output : out_channel -> string -> int -> int -> unit

The input functions are slightly different. The input_char function
reads a single character, and the input_1ine function reads an entire line,
discarding the line terminator. The input functions raise the exception
End_of_file if the end of the file is reached before the entire value could
be read.

val input_char : in_channel -> char
val input_line : in_channel -> string
val input : in_channel -> string -> int -> int -> int

There are also several functions for passing arbitrary OCaml values on
a channel opened in binary mode. The format of these values is imple-
mentation specific, but it is portable across all standard implementations
of OCaml. The output_byte and input_byte functions write/read a sin-
gle byte value. The output_binary_int and input_binary_int functions
write/read a single integer value.

The output_value and input_value functions write/read arbitrary
OCaml values. These functions are unsafe! Note that the input_value
function returns a value of arbitrary type ’a. OCaml makes no effort to
check the type of the value read with input_value against the type of the
value that was written with output_value. If these differ, the compiler will
not know, and most likely your program will generate a segmentation fault.

val output_byte : out_channel -> int -> unit

val output_binary_int : out_channel -> 1int -> unit
val output_value : out_channel -> ’a -> unit

val input_byte : in_channel -> int

val input_binary_int : in_channel -> int

val input_value : in_channel -> ’a

9.3 Channel manipulation

If the channel is a normal file, there are several functions that can modify
the position in the file. The seek_out and seek_in function change the
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file position. The pos_out and pos_in function return the current position
in the file. The out_channel_Tlength and in_channel_Tlength return the
total number of characters in the file.

val seek_out : out_channel -> int -> unit
val pos_out : out_channel -> 1int

val out_channel_length : out_channel -> int
val seek_in : in_channel -> int -> unit

val pos_in : in_channel -> 1int

val in_channel_length : in_channel -> int

If a file may contain both text and binary values, or if the mode of the
the file is not know when it is opened, the set_binary_mode_out and
set_binary_mode_in functions can be used to change the file mode.

val set_binary_mode_out : out_channel -> bool -> unit
val set_binary_mode_in : in_channel -> bool -> unit

The channels perform buffered 1/0. By default, the characters on an
out_channel are not all written until the file is closed. To force the writing
on the buffer, use the flush function.

val flush : out_channel -> unit

9.4 Printf

The regular functions for I/O can be somewhat awkward. OCaml also imple-
ments a printf function similar to the printf in Unix/C. These functions
are defined in the library module Printf. The general form is given by
fprintf.

val fprintf: out_channel -> (’a, out_channel, unit) format ->

Don’t be worried if you don’t understand this type definition. The
format type is a built-in type intended to match a format string. The nor-
mal usage uses a format string. For example, the following statement will
print a line containing an integer i and a string s.

fprintf stdout "Number = %d, String = %s\n" i s

The strange typing of this function is because OCaml checks the type of
the format string and the arguments. For example, Ocaml analyzes the for-
mat string to tell that the following fprintf function should take a float,
int, and string argument.

a

# let f = fprintf stdout "Float = %g, Int = %d, String = %s\n";;

Float = val f : float -> int -> string -> unit = <fun>
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The format specification corresponds roughly to the C specification.
Each format argument takes a width and length specifier that corresponds
to the C specification.

d or i convert an integer argument to signed decimal
u convert an integer argument to unsigned decimal

X convert an integer argument to unsigned hexadecimal, using lowercase
letters.

X convert an integer argument to unsigned hexadecimal, using uppercase
letters

s insert a string argument
c insert a character argument

f convert a floating-point argument to decimal notation, in the style
dddd.dad

e or E convert a floating-point argument to decimal notation, in the style
d.ddd e+-dd (mantissa and exponent)

g or G convert a floating-point argument to decimal notation, in style f or
e, E (whichever is more compact)

b convert a Boolean argument to the string true or false

a user-defined printer. It takes two arguments; it applies the first one to
the current output channel and to the second argument. The first ar-
gument must therefore have type out_channel -> ’b -> unit and
the second one has type 'b. The output produced by the function is
therefore inserted into the output of fprintf at the current point.

t same as %a, but takes only one argument (with type
out_channel -> unit)and applies it to the current out_channel.

% takes no argument and output one % character.

The Printf module also provides several additional functions for print-
ing on the standard channels. The printf function prints in the channel
stdout, and eprintf prints on stderr.

Tet printf = fprintf stdout
Tet eprintf = fprintf stderr

The sprintf function has the same format specification as printf, but
it prints the output to a string and returns the result.

val sprintf: (’a, unit, string) format -> ’a
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9.5 String buffers

The Buffer library module provides string buffers. The string buffers can
be significantly more efficient that using the native string operations. String
buffers have type Buffer.t. The type is abstract, meaning that the imple-
mentation of the buffer is not specified. Buffers can be created with the
Buffer.create function.

type t (* Abstract type of string buffers *)
val create : unit -> t

There are several functions to examine the state of the buffer. The
contents function returns the current contents of the buffer as a string.
The Tength function returns the total number of characters stored in the
buffer. The cTear and reset function remove the buffer contents; the dif-
ference is that reset also deallocates the internal storage used to save the
current contents.

val contents : t -> string
val length : t -> 1int
val clear : t -> unit
val reset : t -> unit

There are also several functions to add values to the buffer. The
add_char function appends a character to the buffer contents. The
add_string function appends a string to the contents; there is also an
add_substring function to append part of a string. The add_buffer func-
tion appends the contents of another buffer, and the add_channel reads
input off a channel and appends it to the buffer.

val add_char : t -> char -> unit

val add_string : t -> string -> unit

val add_substring : t -> string -> int -> int -> unit
val add_buffer : t -> t -> unit

val add_channel : t -> in_channel -> int -> unit

The output_buffer function can be used to write the contents of the
buffer to an out_channel.

val output_buffer : out_channel -> t -> unit

The Printf module also provides formatted output to a string buffer.
The bprintf function takes a printf-style format string, and formats out-
put to a buffer.

val bprintf: Buffer.t -> (’a, Buffer.t, unit) format -> ’a



Chapter 10

Files, Compilation Units, and
Programs

One of the principles of modern programming is data hiding using en-
capsulation. An abstract data type (ADT) is a program unit that defines a
data type and functions (also called methods) that operate on that data type.
An ADT has two parts: a signature (or interface) that declares the accessible
data structures and methods, and an implementation that defines concrete
implementations of the objects declared in the signature. The implementa-
tion is hidden: all access to the ADT must be through the methods defined
in the signature.

There are several ideas behind data hiding using ADTs. First, by sepa-
rating a program into distinct program units (called modules), the program
may be easier to understand. Ideally, each module encapsulates a single
concept needed to address the problem at hand.

Second, by hiding the implementation of a program module, dependen-
cies between program modules become tightly controlled. Since all inter-
actions must be through a module’s methods, the implementation of the
module can be changed without affecting the correctness of the program
(as long as the behavior of the methods is preserved).

OCaml provides a module system that makes it easy to use the concepts
of encapsulation and data hiding. In fact, in OCaml every program file acts
as an abstract module, called a compilation unit in the OCaml terminology.
A signature for the file can be defined in a .m11 file with the same name. If
there is no .m11 file, the default signature includes all type and functions
defined in the .m1 file.

67
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10.1 Signatures

In OCaml, a signature contains type definitions and function declarations

for the visible types and methods in the module. To see how this works,

let’s revisit the binary trees we defined in Chapter [6] A binary tree defines

a simple, distinct concept, and it is an ideal candidate for encapsulation.
A module signature usually contains three parts:

1. Data types used by the module.
2. Exceptions used by the module.

3. Method type declarations for all the externally visible methods defined
by the module.

For the binary tree, the signature will need to include a type for binary
trees, and type declarations for the methods for operating on the tree. First,
we need to choose a filename for the compilation unit. The filename should
reflect the function of the data structure defined by the module. For our
purposes, the binary tree is a data structure used for defining a finite set of
values, and an appropriate filename for the signature would be fset.ml1.

The data structure defines a type for sets, and three methods: an empty
set, a mem membership function, and an insert insertion function. The
complete signature is defined below; we’ll discuss each of the parts in the
following sections.

(* The abstract type of sets *)
type ’a t

(* Empty set *)
val empty : ’a t

(* Membership function *)
val mem : ’a -> ’a t -> bool

(* Insertion is functional *)
val insert : 'a -> ’a t -> ’a t

10.1.1 Type declarations

Type declarations in a signature can be either transparent or abstract. An
abstract type declaration declares a type without giving the type definition;
a transparent type declaration includes the type definition.

For the binary tree, the declaration type ’a t is abstract because the
type definition is left unspecified. In this case, the type definition won’t be
visible to other program units; they will be forced to use the methods if they
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want to operate on the data type. Note that the abstract type definition is
polymorphic: it is parameterized by the type variable ’a.

Alternatively, we could have chosen a transparent definition that would
make the type visible to other program modules. For example, if we intend
to use the unbalanced tree representation, we might include the following
type declaration in the signature.

type ’a t =
Node of ’a t * ’a * ’a t
| Leaf

By doing this, we would make the binary tree structure visible to other
program components; they can now use the type definition to access the
binary tree directly. This would be undesirable for several reasons. First,
we may want to change the representation later (by using red-black trees
for example). If we did so, we would have to find and modify all the other
modules that accessed the unbalanced structure directly. Second, we may
be assuming that there are some invariants on values in the data structure.
For example, we may be assuming that the nodes in the binary tree are or-
dered. If the type definition is visible, it would be possible for other program
modules to construct trees that violate the invariant, leading to errors that
may be difficult to find.

10.1.2 Method declarations

The method declarations include all the functions and values that are visible
to other program modules. For the Fset module, the visible methods are
the empty, mem, and insert methods. The signature gives only the type
declarations for these methods.

It should be noted that only these methods will be visible to other pro-
gram modules. If we define helper functions in the implementation, these
functions will be private to the implementation and inaccessible to other
program modules.

10.2 Implementations

The module implementation is defined in a .m1 file with the same base name
as the signature file. The implementation contains parts that correspond to
each of the parts in the signature.

1. Data types used by the module.

2. Exceptions used by the module.
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3. Method definitions.

The definitions do not have to occur in the same order as declarations in
the signature, but there must be a definition for every item in the signature.

10.2.1 Type definitions

In the implementation, definitions must be given for each of the types in the
signature. The implementation may also include other types. These types
will be private to the implementation; they will not be visible outside the
implementation.

For the Fset module, let’s use the red-black implementation of balanced
binary trees. We need two type definitions: the definition of the Red and
Black labels, and the tree definition itself.

type color =
Red
| Black

type ’a t =
Node of color *
| Leaf

at*’a*’at

The color type is a private type, the ’a t type gives the type definition
for the abstract type declaration type ’a tin the signature.

10.2.2 Method definitions

In the implementation we need to implement each of the methods declared
in the signature. The empty method is easy: the Leaf node is used to
implement the empty set.

Tet empty = Leaf

The mem method performs a search over the binary tree. The nodes in
the tree are ordered, and we can use a binary search.

Tet rec mem x = function
Leaf -> false
| Node (_, a, y, b) ->
if x <y then mem x a
else if x > y then mem x b
else true

The implement the insert method we need two methods: one is the
actual insert function, and another is the helper function balance that
keeps the tree balanced. We can include both functions in the implemen-
tation. The baTance function will be private, since it is not declared in the
signature.
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Tet balance = function
Black, Node (Red, Node (Red, a, x, b), vy, &, z, d ->
Node (Red, Node (Black, a, x, b), y, Node (Black, c, z, d))
| Black, Node (Red, a, x, Node (Red, b, y, c)), z, d ->
Node (Red, Node (Black, a, x, b), y, Node (Black, c, z, d))
| Black, a, x, Node (Red, Node (Red, b, y, ¢, z, d) ->
Node (Red, Node (Black, a, x, b), y, Node (Black, c, z, d))
| Black, a, x, Node (Red, b, y, Node (Red, c, z, d)) ->
Node (Red, Node (Black, a, x, b), y, Node (Black, c, z, d))
| a, b, ¢, d ->
Node (a, b, c, d)

Tet insert x s =
Tet rec ins = function
Leaf -> Node (Red, Leaf, x, Leaf)
| Node (color, a, y, b) as s ->
if x < y then balance (color, 1ins a, y, b)
else if x > y then balance (color, a, y, ins b)
else s
in
match ins s with (* guaranteed to be non-empty *)
Node (_, a, y, b) -> Node (Black, a, y, b)
| Leaf -> raise (Invalid_argument "insert")

10.3 Building a program

Once a compilation unit is defined, the types and methods can be used in
other files by prefixing the names of the methods with the capitalized file
name. For example, the empty set can be used in another file with the name
Fset.empty.

Let’s define another module to test the Fset implementation. This will
be a simple program with an input loop where we can type in a string. If
the string is not in the set, it is added; otherwise, the loop will print out a
message that the string is already added. To implement this program, we
need to add another file; we’ll call it test.m1.

The Test compilation unit has no externally visible types or methods.
By default, the test.mli file should be empty. The Test implementation
should contain a function that recursively:

1. prints a prompt
2. reads a line from stdin

3. checks if the line is already in the set
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4. if it is, then print a message

5. repeat
We’ll implement this as a Toop method.

Tet Toop O =
Tet set = ref Fset.empty in
try
while true do
output_string stdout "set> ";
flush stdout;
Tet Tine = input_line stdin in
if Fset.mem line !set then
Printf.printf "%s 1is already in the set\n" line

else
Printf.printf "%s added to the set\n" line;
set := Fset.insert line !set
done
with
End_of_file ->
O
Tet _ = Toop O

There are a few things to note. First, we need to catch the End_of_file
exception that is raised when the end of the input file is reached. In
this case, we exit without comment. To run the loop, we include the line
Tet _ = Toop (). Thelet _ = ... may seem strange: it tells the OCaml
parser that this is a new top level expression. Another way to accomplish
this is by adding the ; ; terminator after the last () expression in the Toop

function.

10.4 Compiling the program

Once the files for the program are defined, the next step is to compile them
using ocamlc. The usage of ocamlc is much like cc. Normally, the files
are compiled separately and linked into an executable. Signatures must be
compiled first, followed by the implementations.

For the fset module, the signature can be compiled with the following
command.

% ocamlc -c fset.mli
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If there are no errors in the signature, this step produces a file called
fset.cmi.
The implementations are compiled with the following command.

% ocamlc -c fset.ml
% ocamlc -c test.ml

If this step is successful, the compiler produces the files fset.cmo and
test.cmo.

The modules can now be linked into a complete program using the
ocamlc linker. The command is as follows.

% ocamlc -o test fset.cmo test.cmo

The linker requires all of the .cmo files to be included in the program.
The order of these files is important! Each module in the link line can refer
only to the modules listed before it. If we reverse the order of the modules
on the link line, we will get an error.

% ocamlc -o test test.cmo fset.cmo
Error while Tinking test.cmo: Reference to undefined global
Exit 2

Once the program is linked, we can run it.

% ./test

set> hello

hello added to the set

set> world

world added to the set

set> hello

hello is already in the set
set> X

x added to the set

set> world

world 1is already in the set

10.4.1 Where is the “main” function?

Unlike C programs, OCaml program do not have a “main” function. When an
OCaml program is evaluated, all the statements in the files in the program
are evaluated in the order specified on the link line. Program files contain
type and method definitions. They can also contain arbitrary expressions
to be evaluated. The Tet _ = Toop () statement in the test.m] file is an
example: it evaluates the Toop function. Informally, this is the main loop;
it is the last expression to be executed in the program.

‘Fset’
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10.4.2 Some common errors

When a .m1 file is compiled, the compiler compares the implementation with
the signature in the .cmi file. If a definition does not match the signature,
the compiler will print an error and refuse to compile the file.

Type errors

For example, suppose we had reversed the order of arguments in the
Fset.insert function so that the set argument is first.

Tet insert s x =
When we compile the file, we get an error. The compiler prints the types
of the mismatched values, and exits with an error code.

% ocamlc -c fset.ml

The implementation fset.ml does not match the interface fset.

Values do not match:

val insert : ’a t -> ’a -> 'a t
is not included 1in

val insert : ’a -> ’a t -> 'a t
Exit 2

Missing definition errors

Another common error occurs when a method declared in the signature is
not defined in the implementation. For example, suppose we had defined
an add method rather than an insert method. In this case, the compiler
prints the name of the missing method, and exits with an error code.

% ocamlc -c fset.ml

The implementation fset.ml does not match the interface fset.

The field ‘insert’ 1is required but not provided
Exit 2

Type definition mismatch errors

Transparent type definitions in the signature can also cause an error if the
type definition in the implementation does not match. Suppose we were to
export the definition for type ’a t. We need to include exactly the same
definition in the implementation. A correct fset.m11 file would contain the
following definition.

type color

cmi:

cmi:
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type ’a t =
Node of color
| Leaf

* 7

at™®* ’a *

Note that we must include a type definition for color, since it is used
in the definition of the set type a t. The type definition for color may be
transparent or abstract.

Now, suppose we reorder the constructors in the interface definition for
’a t by placing the Leaf constructor first.

type color

type ’a t =
Leaf
| Node of color * 'a t * ’a * ’a t

When we compile the file, the compiler will produce an error with the
mismatched types.

% ocamlc -c fset.mli

% ocamlc -c fset.ml

The implementation fset.ml does not match the interface fset.cmi:
Type declarations do not match:

type 'a t = | Node of color * ’a t * ’a * 'a t | Leaf
is not included 1in

type ’a t = | Leaf | Node of color * ’a t * ’a * ’a t
Exit 2

Compile dependency errors

The compiler will also produce errors if the compile state is inconsistent.
Each time an interface is compile, all the files that uses that interface must
be recompiled. For example, suppose we update the fset.mli file, and
recompile it and the test.ml file (but we forget to recompile the fset.ml
file). The compiler produces the following error.

% ocamlc -c fset.mli

% ocamlc -c test.ml

% ocamlc -o test fset.cmo test.cmo

Files test.cmo and fset.cmo make inconsistent
assumptions over interface Fset

Exit 2

It takes a little work to detect the cause of the error. The compiler says
that the files make inconsistent assumptions for interface Fset. The inter-
face is defined in the file fset.cmi, and so this error message states that at
least one of fset.ml or test.cmo needs to be recompiled. In general, we
don’t know which file is out of date, and the best solution is to recompile
them all.
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10.5 Using open to expose a namespace

Using the full name Module_name.method_name to refer to the methods in
a module can get tedious. The open Module_name statement can be used
to “open” a module interface, which will allow the use of unqualified names
for types, exceptions, and methods. For example, the test.m]l module can
be somewhat simplified by using the open statements for the Printf and
Fset modules.

open Printf
open Fset

Tet Toop O =
Tet set = ref empty in
try
while true do
output_string stdout "set> ";
flush stdout;
Tet Tine = input_line stdin in
if mem line !set then
printf "%s is already in the set\n" line

else
printf "%s added to the set\n" Tine;
set := insert line !set
done
with
End_of_file ->
O
Tet _ = Toop O

Sometimes multiple opened modules will define the same name. In this
case, the last module with an open statement will determine the value of
that symbol. Fully qualified names (of the form Module_name.name) may
still be used even if the module has been opened. Fully qualified names can
be used to access values that may have been hidden by an open statement.

10.5.1 A note about open

Be careful with the use of open. In general, fully qualified names provide
more information, specifying not only the name of the value, but the name
of the module where the value is defined. For example, the Fset and List
modules both define a mem function. In the Test module we just defined,
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it may not be immediately obvious to a programmer that the mem symbol
refers to Fset.mem, not List.mem.

In general, you should use open statement sparingly. Also, as a matter
of style, it is better not to open most of the library modules, like the Array,
List, and String modules, all of which define methods (like create) with
common names. Also, you should never open the Unix, Obj, and Marshal
modules! The functions in these modules are not completely portable, and
the fully qualified names identify all the places where portability may be a
problem (for instance, the Unix grep command can be used to find all the
places where Unix functions are used).

The behavior of the open statement is not like an #incTude statement
in C. An implementation file mod.m1 should not include an open Mod state-
ment. One common source of errors is defining a type in a .m11 interface,
then attempting to use open to “include” the definition in the .m1 imple-
mentation. This won’t work—the implementation must include an identical
type definition. True, this is an annoying feature of OCaml. But it preserves
a simple semantics: the implementation must provide a definition for each
declaration in the signature.

10.6 Debugging a program

The ocamldebug program can be used to debug a program compiled with
ocamlc. The ocamldebug program is a little like the GNU gdb program,;
it allows breakpoints to be set. When a breakpoint is reached, control is
returned to the debugger so that program variables can be examined.

To use ocamldebug, the program must be compiled with the -g flag.

% ocamlc -c -g fset.mli
% ocamlc -c -g fset.ml
% ocamlc -c -g test.ml
% ocamlc -o test -g fset.cmo test.cmo

The debugger is invoked using by specifying the program to be debugged
on the ocamldebug command line.

% ocamldebug ./test
Objective Caml Debugger version 2.04

(ocd) help

List of commands :

cd complete pwd directory kill help quit run reverse step
backstep goto finish next start previous print display source
break delete set show info frame backtrace bt up down last
Tist Toad_printer install_printer remove_printer
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(ocd)

There are several commands that can be used. The basic commands are
run, step, next, break, 1ist, print, and goto.

run Start or continue execution of the program.

break @ module linenum Set a breakpoint on line linenum in module mod-
ule.

list display the lines around the current execution point.

print expr Print the value of an expression. The expression must be a vari-
able.

goto time Execution of the program is measured in time steps, starting
from 0. Each time a breakpoint is reached, the debugger will print
the current time. The goto command may be used to continue execu-
tion to a future time, or to a previous timestep.

step Go forward one time step.

next If the current value to be executed is a function, evaluate the func-
tion, a return control to the debugger when the function completes.
Otherwise, step forward one time step.

For debugging the test program, we need to know the line numbers.
Let’s set a breakpoint in the Toop function, which starts in line 27 in the
Test module. We'll want to stop at the first line of the function.

(ocd) break @ Test 28

Loading program... done.

Breakpoint 1 at 24476 : file Test, line 28 column 4
(ocd) run

Time : 7 - pc : 24476 - module Test

Breakpoint : 1

28 <|b|>1et set = ref Fset.empty 1in

(ocd) n

Time : 8 - pc : 24488 - module Test
29 <|b|>try

(ocd) p set

set : string Fset.t ref = {contents=Fset.Leaf}

Next, let’s set a breakpoint after the next input line is read and continue
execution to that point.



10.6. DEBUGGING A PROGRAM 79

(ocd) 1ist
27 Tet loop OO =
28 Tet set = ref Fset.empty in

29 <|b|>try

30 while true do

31 output_string stdout "set> ";

32 flush stdout;

33 Tet Tine = input_line stdin in

34 if Fset.mem Tine !set then

35 Printf.printf "%s 1is already in the set\n" line
36 else

37 Printf.printf "%s added to the set\n" line;
38 set := Fset.insert Tine !set

39 done

(ocd) break @ 34

Breakpoint 2 at 24600 : file Test, Tine 33 column 40
(ocd) run

set> hello

Time : 22 - pc : 24604 - module Test

Breakpoint : 2

34 <|b|>if Fset.mem Tine !set then
(ocd) p Tine
Tine : string = "hello"

When we run the program, the evaluation prompts us for an input line,
and we can see the value of the line in the 11ine variable. Let’s continue and
view the set after the line is added.

(ocd) n

Time : 24 - pc : 24628 - module Test

34 if Fset.mem line !set<]|al|> then

(ocd) n

Time : 25 - pc : 24672 - module Test

37 <|b|>Printf.printf "%s added to the set\n" Tine;
(ocd) n

Time : 135 - pc : 24700 - module Test

37 Printf.printf "%s added to the set\n" line<]|al|>;
(ocd) n

Time : 141 - pc : 24728 - module Test

38 set := Fset.insert Tine !set<|al|>

(ocd) n

Time : 142 - pc : 24508 - module Test

31 <|b|>output_string stdout "set> ";

(ocd) p set

set : string Fset.t ref =
{contents=Fset.Node (<abstr>, Fset.Leaf, "hello", Fset.Leaf)}
(ocd)
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This value seems to be correct. Next, suppose we want to go back a
descend into the Fset.mem function. We can go back to time 22 (the time
just before the Fset.mem function is called), and use the step command to
descend into the membership function.

(ocd) goto 22

set> hello

Time : 22 - pc : 24604 - module Test

Breakpoint : 7

34 <|b|>if Fset.mem 1line !set then
(ocd) s

Time : 23 - pc : 22860 - module Fset

39 Leaf -> <|b|>false

(ocd) s

Time : 24 - pc : 24628 - module Test

34 if Fset.mem line !set<|a|> then
(ocd)

Note that when we go back in time, the program prompts us again for
an input line. This is due to way time travel is implemented in ocam1debug.
Periodically, the debugger takes a checkpoint of the program (using the
Unix fork() system call). When reverse time travel is requested, the de-
bugger restarts the program from the closest checkpoint before the time
requested. In this case, the checkpoint was taken sometime before the call
to input_Tine, and the program resumption requires another input value.

When we step into the Fset.mem function, we see that the membership
is false (the set is the Leaf empty value). We can continue from here, exam-
ining the remaining functions and variables. You may wish to explore the
other features of the debugger. Further documentation can be found in the
OCaml reference manual.
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The OCaml Module System

The compilation units discussed in the Chapter(l0|are not the only way to
create modules. OCaml provides a general module system where modules
can be created explicitly using the module keyword. There are three key
parts in the module system: signatures, structures, and functors.

Module signatures correspond to the signatures defined in a .m11 file,
and module structures correspond to the implementations defined in a .m1
file. There is one major difference. Each compilation unit has at most one
signature, defined by the .m117 file. The module system is more general: a
single signature can be used to specify multiple structures; and a structure
can have multiple signatures.

This ability to share signatures and structures can have important effects
on code re-use. For example, in Chapter[6] we introduced three implemen-
tations of finite sets (using unbalanced, ordered, and balanced binary trees).
All three of these implementations can be expressed as structures having
the same signature. Any of the three implementations can be used in a
context that requires an implementation of finite sets.

The ability to assign multiple signatures to a structure becomes useful
in larger programs composed of multiple components each spread over
multiple files. The structures within a program component may make their
implementations visible to one another (like a “friend” declaration in a C++
class, or a protected declaration for a Java method). Outside the program
component, a new signature may be assigned to hide the implementation
details (making them private).

The OCaml module system also includes functors, or parameterized
structures. A functor is a function that computes a structure given a struc-
ture argument. Functors provide a simple way to generalize the implemen-
tation of a structure.

In the following sections, we’ll describe the three different parts of the
module system by developing the finite set example in the context of the
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module system.

11.1 Module signatures
A module signature is declared with a module type declaration.
module type Name = sig signature end

The name of the signature must begin with an uppercase letter. The
signature can contain any of the items that can occur in an interface .mT1i
file, including any of the following.

o type declarations

e exception definitions

o method type declarations, using the val keyword

e open statements to open the namespace of another signature

e include statements that include the contents of another signature

« nested signature declarations

Signatures can be defined in an interface, implementation, or in the
OCaml toploop. A signature is like a type declaration—if a .m11 file de-
fines a signature, the same signature must also be defined in the .m1 file.

For the finite set example, the signature should include a type declaration
for the set type, and method declarations for the empty, mem, and insert
methods. For this example, we’ll return to the OCaml toploop, which will
display the types of the modules we define.

# module type FsetSig =
sig
type ’a t
val empty :
val mem : ’a
val insert :
end;;
module type FsetSig =
sig
type ’'a t
val empty : ’a t
val mem : ’a -> ’a t -> bool
val insert : ’a -> ’a t -> ’a t
end

at
a t -> bool

->
a ->’'at ->"’at
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The include statement can be used to create a new signature that ex-
tends an existing signature. For example, suppose we would like to define
a signature for finite sets that includes a delete function to remove an el-
ement of a set. One way to be to re-type the entire signature for finite sets
followed by the delete declaration. The include statement performs this
inclusion automatically.

# module type FsetDSig =
sig
include Fset
val delete :
end;;
module type FsetDSig =
sig
type 'a t
val empty : ’a t
val mem : ’a -> ’a t -> bool
val insert : 'a -> ’a t -> ’a
val delete : ’a -> ’a t -> ’a
end

a->'at->"at

t
t

11.2 Module structures
Module structures are defined with the module keyword.
module Name = struct implementation end

Once again, the module name must begin with an uppercase letter. The
implementation is exactly the same as the contents of a .m1 file. It can
include any of the following.

¢ type definitions

e exception definitions

« method definitions, using the Tet keyword

e open statements to open the namespace of another module

¢ include statements that include the contents of another module
o signature declarations

¢ nested structure definitions

Let’s try this with the balanced binary tree example (the complete defi-
nitions for the balance and insert functions are given in Section[10.2.2).
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# module Fset =

struct

type color =
Red
| Black

type ’a t =
Node of color *
| Leaf

let empty = Leaf

let rec mem x = function
Leaf -> false
| Node (_, a, y, b) ->
if x <y then mem x a

at®*’a*

else if x > y then mem x b

else true

let balance = ...

let insert x s = ...

end;;

sig

module Fset :
type color = | Red | Black
and ’a t = | Node of color * ’
val empty : ’a t
val mem : ’a -> ’a t -> bool
val balance : color * ’a t * ’
val insert : 'a -> 'a t -> ’a

end

# Fset.empty;;

’a Fset.t = Fset.Leaf

# Fset.balance;;

Fset.color * ’a Fset.t * 'a *

11.2.1 Assigning a signature

THE OCAML MODULE SYSTEM

at®*’a®* ’at | Leaf
a*’at->"’at
t

’a Fset.t ->

’a Fset.t = <fun>

Note that the default signature assigned to the structure exposes all of the
types and functions in the structure, including the type definitions for the
color and 'a t types, as well as the balance function, which would nor-
mally be hidden. To assign a signature to a structure, we include a type
constraint using a : modifier of the following form.

module Name : SigName = struct implementation end
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In the finite set example, we want to assign the FsetS1ig signature to the
module.

# module Fset : FsetSig =
struct
type color =
Red
| Black

type ’a t =
Node of color
| Leaf

* 7

at*’a*’at

let empty = Leaf
let rec mem x = ...
let balance = ...
let insert x s = ...
end;;

module Fset : FsetSig

# Fset.empty;;

- : ’a Fset.t = <abstr>

# Fset.balance;;

Characters 0-12:

Unbound value Fset.balance

When we assign this signature, the type definition for ’a t becomes
abstract, and the balance function is no longer visible outside the module
definition.

11.3 Functors

One problem with the implementation of finite sets that we have been using
is the use of the built-in < comparison operation to compare values in the
set. The definition of the < operator is implementation-specific, and it may
not always define the exact ordering that we want.

To fix this problem, we can define our own comparison function, but we
will need to define a separate finite set implementation for each different
element type. For this purpose, we can use functors. A functor is a function
on modules; the function requires a module argument, and it produces a
module. Functors can be defined with the functor keyword, or with a more
common alternate syntax.

module Name = functor (ArgName : ArgSig) ->
struct implementation end

module Name (Arg : ArgSig) =
struct implementation end
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For the finite set example, we’ll need to define an argument structure
that includes a type elt of elements, and a comparison function compare.
We'll have the compare function return one of three kinds of values:

e a negative number if the first argument is smaller than the second,
e zero if the two arguments are equal,

¢ a positive number if the first argument is larger than the second.

module type E1tSig =
sig

type elt

val compare : elt -> elt -> 1int
end

The finite set signature FsetSig must also be modified to used a specific
element type elt. Note that the set itself is no longer polymorphic, it is
defined for a specific type of elements.

module type FsetSig =
sig

type elt

type t

val empty : t

val mem : elt -> t -> bool

val insert : elt -> t -> t
end

Next, we redefine the set implementation as a functor. The implementa-
tion must be modified to include a type definition for the e1t type, and the
mem and insert functions must be modified to make use of the comparison
function from E1t.

# module MakeFset (ETt : E1tSig) =
struct
type elt = Elt.elt
type color = ...
type t =
Node of color * t * elt * t
| Leaf

Tet empty = Leaf
let rec mem x = function

Leaf -> false
| Node (_, a, y, b) ->
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Tet i = ETt.compare x y in
if i < 0 then mem x a
else if i > 0 then mem x b
else true

let balance = ...

let insert x s =
let rec ins = function
Leaf -> Node (Red, Leaf, x, Leaf)
| Node (color, a, y, b) as s ->
let i = ETt.compare x y in
if i < 0 then balance (color, ins a, y, b)
else if i > 0 then balance (color, a, y, ins b)
else s
in
match ins s with (* guaranteed to be non-empty *)
Node (_, a, y, b) -> Node (Black, a, y, b)
| Leaf -> raise (Invalid_argument "insert")
end;;
module MakeFset :
functor(Elt : ETtSig) ->

sig
type elt = Elt.elt
and color = | Red | Black
and t = | Node of color * t * elt * t | Leaf

val empty : t
val mem : Elt.elt -> t -> bool
val balance : color * t * elt * t -> t
val insert : elt -> t -> t
end

Note the return type. The argument type is right: the functor takes
an argument module E1t with signature E1tSig. But the returned module
makes the implementation fully visible. To fix this problem, we need to add
a type constraint using the : modifier.

# module MakeFset (ETt : E1tSig) : FsetSig =
struct
type elt = Elt.elt
type color = ...
type t = ...
let empty = ...
let rec mem x = ...
let balance = ...
let insert x s = ...
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end; ;
module MakeFset : functor(E1t : E1tSig) -> FsetSig

11.3.1 Using a functor

To use the module produced by the functor, we need to apply it to a specific
module implementating the E1tSig signature. Let’s define a comparison
function for a finite set of integers. The comparison function is straightfor-
ward.

# module Int =
struct
type elt = int
let compare i j =
if i < j then

-1

else if i > j then
1

else (* 1 =3 *)
0

end; ;
module Int : sig type elt = int val compare : int -> int -> int end
# Int.compare 3 5;;
- :1int = -1

We must not give the Int module the signature E1tSig. In the E1tSig
signature, the elt type is abstract. Since there is no way to create a value
of the abstract type elt, it would become impossible to use the compare
function, and the module would become useless.

# module Int’ = (Int : E1tSig);;

module Int’ : E1tSig

# Int’.compare 3 5;;

Characters 13-14:

This expression has type int but is here used with type Int’.elt

A functor is applied to an argument with the syntax Functor_name
(Arg_name). To build a finite set of integers, we apply the MakeFset functor
to the Int module.

# module IntSet = MakeFset (Int);;
module IntSet :
sig
type elt = MakeFset(Int).elt
and t = MakeFset(Int).t
val empty : t
val mem : elt -> t -> bool
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val insert : elt -> t -> t
end
# IntSet.empty;;
- : IntSet.t = <abstr>

Note the type definitions for elt and t: both types are abstract.

11.3.2 Sharing constraints

In its current state, the IntSet module is actually useless. Once again, the
problem is with type abstraction: the elt type is defined as an abstract type
in the FsetS1ig signature. The OCaml compiler remembers that the type of
elements elt is produced by an application of the functor, but it doesn’t
know that the argument type in the Int module was int.

# IntSet.insert 5 IntSet.empty;;

Characters 14-15:

This expression has type int but is here used with type
IntSet.elt = MakeFset(Int).elt

To fix this problem, we can’t add a type definition in the FsetSig module,
since we want to be able to construct finite sets with multiple different
element types. The only way to fix this problem is to add a constraint on
the functor type that specifies that the et type produced by the functor is
the same as the elt type in the argument.

11.3.3 An implementation that works

These kind of type constraints are called sharing constraints. The argument
and value of the MakeFset functor “share” the same elt type. Sharing
constraints are defined by adding a with type constraint to a signature.
The corrected definition of the MakeFset functor is as follows

# module MakeFset (E1t : ETtSig)
FsetSig with type elt = Elt.elt =
struct
type elt = Elt.elt
type color = ...
type t = ...
Tet empty = ...
let rec mem x = ...
let balance = ...
let insert x s = ...
end;;
module MakeFset :
functor(E1t : ETtSig) ->
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sig
type elt = Elt.elt
and t
val empty : t
val mem : elt -> t -> bool
val insert : elt -> t -> t
end

The toploop now displays the correct element specification. When we
redefine the IntSet module, we get a working version of finite sets of inte-
gers.

# module IntSet = MakeFset (Int);;
module IntSet :
sig
type elt = Int.elt
and t = MakeFset(Int).t
val empty : t
val mem : elt -> t -> bool
val insert : elt -> t -> t
end
# IntSet.empty;;
- : IntSet.t = <abstr>
# open IntSet;;
# let s = insert 3 (insert 5 (insert 1 empty));;
val s : IntSet.t = <abstr>
# mem 5 s;;
- : bool = true
# mem 4 s;;
- : bool = false



Chapter 12

The OCaml Object System

OCaml includes a unique object system with classes, parameterized
classes, and objects, and the usual features of inheritance and subclassing.
Objects are perhaps not as frequently used in OCaml as in other languages
like C++ or Java, because the module system provides similar features for
code re-use. However, classes and objects are often appropriate in programs
where extensibility is desirable.

12.1 The basic object system

The OCaml object system differs in one major way from the classes defined
in many other languages: the object system includes both class types as well
as class expressions. The two are separate, just as module signatures are
separate from module structures. There are three construct in the OCaml
object system: class type are signatures for classes, classes are initial spec-
ifications for objects, and objects are instances of classes created with the
new keyword.

12.1.1 Class types

A class type is defined using a cTass type definition. The syntax of a class
type declaration is as follows.

class type name = object declarations end

The name of the class type should begin with a lowercase letter or an
underscore. The declarations can include any of the following.

¢ Inheritance directives with the inherit keyword.
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e Values, declared with the val keyword.
e Methods, declared with the method keyword.

e Type constraints, declared with the constraint keyword.

To illustrate the object system, let’s use the canonical object example: a
one-dimensional movable point. The point should have methods to return
and modify the position of the point.

The class type for the point includes two methods: one to get the posi-
tion of the point, and another to set the position of the point. We will also
include areset function to return the point to the origin.

# class type point_type =
object
method get : 1int
method set : int -> unit
method reset : unit
end;;
class type point_type = object
method get : int
method set : int -> unit
method reset : unit
end

12.1.2 Class expressions

A class expression gives the definition of a class. The syntax for an class
expression uses the class keyword.

object implementation end
The implementation can include any of the following.

e Values, defined with the val keyword.
e Methods, defined with the method keyword.
e Type constraints, defined with the constraint keyword.

e Initializers, defined with the initializer keyword.

We can build a class of the point_type class type by implementing each
of the fields in the class type. To implement the point, we will need to
include a pos field that specifies the position of the point. The get method
should return the pos value, and the move method should add an offset to
the position.
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# class point =
object
val mutable pos = 0
method get = pos
method set pos’ = pos <- pos’
method reset = pos <- 0
end;;
class point : object
val mutable pos : 1int
method get : 1int
method reset : unit
method set : int -> unit
end

The pos <- pos + off is a side-effect: the value of pos is updated by
adding the offset argument.

Note that the pos field is visible in the class type. To get the correct class
type, we need to add a type constraint.

# class point : point_type
object
val mutable pos = 0
method get = pos
method set pos’ = pos <- pos’
method reset = pos <- 0
end;;
class point : point_type

Class expressions are templates, like function bodies. The expressions
in a class expression are not evaluated when the class is defined; they are
evaluated when the class is instantiated as an object.

12.1.3 Objects

Objects are the values created from classes using the new keyword. The
methods in the object can be accessed by using the # operator.

# let p = new point;;
val p : point = <obj>
# p#get;;

:int =0

p#set 7;;

:unit = O

p#get;;

:int =7

Tet p2 = new point;;

I H 1 H

3
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val p2 : point = <obj>
# p2#get;;
- :1int =0

12.1.4 Parameterized class expressions

Class expressions can be parameterized in OCaml, using a fun expression.
For example, suppose we want to specify the initial position of the point as
an argument to the class expression.

# class make_point_class (initial_pos : int) =
object
val mutable pos = initial_pos
method get = pos

method set pos’ = pos <- pos’
method reset = pos <- 0
end;;
class make_point_class : int ->
object

val mutable pos : int

method get : 1int

method reset : unit

method set : int -> unit
end

We have to constrain the argument initial_pos to be an int: other-
wise the object would be polymorphic. Specific classes can be defined by
application.

# class point7 = make_point_class 7;;
class point7 : make_point_class

# let p = new point7;;

val p : point7 = <obj>

p#get;;

- 1int =7

# p#reset;;

unit = O

p#get;;

- :int =0

H*

H*

A parameterized class can also include Tet definitions in the function
body. For example, we can lift the pos field out of the class and use a
reference cell instead.

# class make_point_class (initial_pos : int) =
let pos = ref initial_pos 1in
object
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method get = !pos
method set pos’ = pos := pos’
method reset = pos := 0
end;;
class make_point_class : int ->

object
method get : int
method reset : unit
method set : int -> unit
end

The body of the class definition is not evaluated initially—it is evaluated
at object instantiation time. All point objects will have separate positions.

# let pl = new point7;;
val pl : point7 = <obj>
# let p2 = new point7;;
val p2 : point7 = <obj>
# pl#set 5;;

- runit = O

# p2#get;;

- int =7

12.2 Polymorphism

Class types, class expressions, and methods can also be polymorphic. For
example, consider the parameterized class make_point_class we just de-
fined. If we do not constrain the type of argument, we get a type of refer-
ence cells. The syntax of a polymorphic class includes the type parameters
in square brackets after the class keyword.

# class [’a] make_ref_cell (x : ’a) =
object
val mutable contents = Xx
method get = contents
method set x = contents <- X

end;;
class [’a] make_ref_cell

a -—>

object
val mutable contents : ’a
method get : ’a
method set : ’a -> unit

end

# class int_ref = [int] make_ref_cell 0;;
class int_ref : [int] make_ref_cell
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# let p = new int_ref;;

val p : int_ref = <obj>

# p#set 7;;

:unit = O

p#get;;

:dint = 7

# class string_ref = [string] make_ref_cell "";;
class string_ref : [string] make_ref_cell
# let s = new string_ref;;

val s : string_ref = <obj>

# s#set "Hello";;

:unit = O

# s#get;;

- : string = "Hello"

FH

12.3 Inheritance

Inheritance allows classes to be defined by extension. For example, suppose
we wish to define anew point class that includes a move method that moves
the point by a relative offset. The move method can be defined using the
get and set methods. To be able to access these methods, we need a self
parameter (like the this object in C++ or Java).

The self parameter is defined after the object keyword. We make a new
class movable_point using the inherit keyword to inherit the point class
definition.

# class movable_point =
object (self)
inherit point
method move off =
self#set (self#get + off)
end;;
class movable_point :
object
method get : 1int
method move : int -> unit
method reset : unit
method set : int -> unit
end
# let p = new movable_point;;
val p : movable_point = <obj>
# p#set 7;;
unit = O
# p#get;;
- :int =7
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# p#move 5;;

- unit =0
# p#get;;

- :int = 12

12.3.1 Multiple inheritance

Classes can also be defined by inheriting from multiple classes. For example,
let’s define a point class that also has a color. The color class can be defined
in the normal way.

# type color = Black | Red | Green | Bluej;;
type color = | Black | Red | Green | Blue
# class color =
object
val mutable color = Black
method get_color = color

method set_color color’ = color <- color’
method reset = color <- Black
end;;
class color :
object

val mutable color : color
method get_color : color
method reset : unit
method set_color : color -> unit
end

# let c = new color;;

val c : color = <obj>

# c#set_color Green;;

-t unit =0

# c#get_color;;

- : color = Green

To define a colored point we inherit from both classes. Objects in this
class will have the methods and values defined in both classes.

# class colored_point =
object
inherit point
inherit color
end; ;
Characters 63-74:
Warning: the following methods are overriden
by the inherited class: reset
class colored_point :
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object
val mutable color : color
method get : 1int
method get_color : color
method reset : unit
method set : int -> unit
method set_color : color -> unit
end
# let cp = new colored_point;;
val cp : colored_point = <obj>
# cp#get;;
- :1int =0
# cp#get_color;;

Note that the compiler produced a warning message when the colored
point is created. The point and color both define a method called reset.
Which definition does the colored point use?

# cp#set 7;;

- unit = O

# cp#set_color Red;;
- runit = O

# cp#reset;;

- runit = O

# cp#get;;

- :int =7

cp#get_color;;
- : color = Black

As usual, the compiler chooses the last definition of the method.

The correct version of the colored point should call both the point and
color reset functions. The colored_point method must override the
definition. To do this, we need to include a name for the object in each of
the inherit declarations.

class colored_point =
object
inherit point as p
inherit color as c
method reset =
p#reset;
c#reset
end;;
Characters 64-69:
Warning: the following methods are overriden by the inherited class:
reset
class colored_point :
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object
val mutable color : color
val mutable pos : 1int
method get : 1int
method get_color : color
method reset : unit
method set : int -> unit
method set_color : color -> unit
end
# let cp = new colored_point;;
val cp : colored_point = <obj>

# cp#set 5;;

- unit = O

# cp#set_color Red;;
- runit = O

# cp#reset;;

-t unit =0

# cp#get;;

- :1int =0

cp#get_color;;
: color = Black

The compiler still produces a warning message, but this time the reset
method works correctly.

12.3.2 Virtual methods

Virtual methods can be used to postpone the implementation of methods
for definition in subclasses. For example, suppose we wish to make a point
that includes a method move to move the object by a relative offset. One
way would be to inheritance to define a new class movable_point based
on the point class. Another, more general, way is to define a separate
movable class that can be combined by multiple inheritance with any class
that implements the get and set methods. This class must be declared as
virtual because it can’t be instantiated (the get and set methods are not
implemented).

# class virtual movable =
object (self)
method virtual get : int
method virtual set : int -> unit
method move off =
self#set (self#get + off)
end;;
class virtual movable :
object
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method virtual get : int
method move : int -> unit
method virtual set : int -> unit
end
# let m = new movable;;
Characters 8-19:
One cannot create instances of the virtual class movable

Now to create the class movabTle_point, we combine the classes by mul-
tiple inheritance.

# class movable_point =
object
inherit point
inherit movable
end;;
class movable_point :
object
val mutable pos : int
method get : int
method move : int -> unit
method reset : unit
method set : int -> unit
end
# let p = new movable_point;;
val p : movable_point = <obj>

# p#set 7;;

- unit = O
# p#move 5;;

- runit = O
# p#get;;

- :int = 12

Note that a virtual method in OCaml does not mean the same thing
as a virtual declaration in C++. In C++, the virtual declaration means
that a method can be overridden in subclasses. In OCaml, all methods are
virtual in this sense. The OCaml virtual declaration just means that the
method definition is omitted.

12.3.3 Subclassing

The inherit declarations in a class definition define an inheritance hierar-
chy. In OCaml an object can be coerced to a class type of any of its ancestors.
Coercions in OCaml must be made explicitly using the :> operator, which
requires two class types: the type of the object, and the type of the object
after the coercion.
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# let p = (cp : colored_point :> point);;
val p : point = <obj>

# p#get;;

- :11int =0

# p#get_color;;

Characters 0-1:

This expression has type point

It has no method get_color

If the class type can be inferred, the first type can be omitted.

# let p = (cp :> point);;
val p : point = <obj>

In OCaml, objects can also be coerced to any class type that has fewer
methods. For example, suppose we want a “read only” colored point without
the set and set_color methods.

# class type read_only_point =
object
method get : 1int
method get_color : color
end;;
class type read_only_point =
object
method get : int
method get_color : color
end
# let ro_p = (cp : colored_point :> read_only_point);;
val ro_p : funny_point = <obj>
# ro_p#get;;
- :1int =0
# ro_p#get_color;;
- : color = Red
# ro_p#set 5;;
Characters 0-4:
This expression has type read_only_point
It has no method set

12.3.4 Superclassing, or typecase

In OCaml, there is no operator to coerce an object to a superclass (there is no
“typecase” operator, or instanceof predicate like in Java). So for instance,
once we coerce a colored_point to a point, there is no corresponding
operator for recovering the colored_point

This kind of problem can arise frequently in some contexts, especially
when binary functions are defined over two objects. For example, suppose
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we wish to implement an equality relation on points. The point_equal
function should take two objects. If both objects have type point, and both
have the same position, the point_equal function should return true. If
both are colored_points, and have the same position and color, it should
also return true. Otherwise, it should return false.

How can we define this function? One thing is clear, the point_equal
function must have type point -> point -> bool because the type of
point is not known beforehand. If the argument is of type point, how can
we tell if it is actually a colored_point?

The easiest way to solve this problem is to use a “trick.” For each class,
we add a new method that uses an exception to return the actual value. We
will call this method typecase, and it will have type unit (since it returns
the result by exception). The point class implements the typecase method
as follows.

# class type point_type =
object
method get : 1int
method set : int -> unit
method reset : unit
method typecase : unit
end; ;
class type point_type =
object
method get : 1int
method reset : unit
method set : int -> unit
method typecase : unit
end
# exception Point of point_type;;
exception Point of point_type
# class point =
object (self)
val mutable pos = 0
method get = pos
method set pos’ = pos <- pos’
method reset = pos <- 0
method typecase = raise (Point (self :> point_type))
end;;
class point
object
val mutable pos : int
method get : int
method reset : unit
method set : int -> unit
method typecase : unit
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end

The typecase method raises the Point exception. Note that the self
parameter must be coerced to point_type.

For the colored_point, we perform a similar operation. First, we define
the type of colored points, and the exception.

# class type colored_point_type =
object
inherit point
inherit color
end;;
class type colored_point_type =
object
val mutable color : color
val mutable pos : int
method get : int
method get_color : color
method reset : unit
method set : int -> unit
method set_color : color -> unit
method typecase : unit
end
# exception ColoredPoint of colored_point_type;;
exception ColoredPoint of colored_point_type

Next, we define the class, and override the typecase method.

# class colored_point =
object (self)
inherit point as p
inherit color as c
method reset =
p#reset;
c#reset
method typecase =
raise (ColoredPoint (self :> colored_point_type))
end;;
Characters 77-82:
Warning: the following methods are overriden by the inherited class:
reset
class colored_point :
object
val mutable color : color
val mutable pos : 1int
method get : int
method get_color : color
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method reset : unit
method set : int -> unit
method set_color : color -> unit
method typecase : unit
end

Now, the typecase method can be used to determine the class type of
a point.

# let pl = new point;;

val pl : point = <obj>

# let p2 = new colored_point;;

val p2 : colored_point = <obj>

# let p3 = (p2 :> point);;

val p3 : point = <obj>

# pl#typecase;;

Uncaught exception: Point(_)

# p2#typecase;;

Uncaught exception: ColoredPoint(_)
# p3#typecase;;

Uncaught exception: ColoredPoint(_)

At this point, we can define the point_print printing function.

# let point_print p =
try p#typecase with
Point p ->
printf "Point: position = %d\n" p#get
| ColoredPoint p ->
let color =
match p#get_color with
Black -> "black"
| Red -> "red"
| Green -> '"green"
| Blue -> "blue"

in
printf "ColoredPoint: position = %d, color = %s\n" p#get color
| — >

raise (Invalid_argument "point_print™);;
val point_print : < typecase : unit; .. > -> unit = <fun>
# pl#tset 7;;
- unit = O
# p2#set_color Green;;
- sunit = O

# List.iter point_print [pl; (p2 :> point); p3];;
Point: position = 7
ColoredPoint: position = 0, color = green
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ColoredPoint: position = 0, color = green
- unit =0

There are two things to note. First, the point_print function takes any
object with a typecase method—no just points. Second, we include a de-
fault exception case: if the typecase method returns some other exception,
the argument is invalid.

12.4 Functional objects

In all of the examples we have given so far, the methods work by side-effect.
OCaml can also be used to implement functional objects, where method
updates produce new values by copying the self object. The syntax for a
functional update uses the

{< ... >}

notation to produce a copy of the current object with the same type as
the current object, with updated fields. The use of the update operator is
important—it is the only way to preserve the current object’s type.

Let’s build a functional version of points. We include the pos field, which
the set method replaces.

# class point =
object
val pos = 0
method get = pos
method set pos’ = {< pos = pos’ >}
end;;
class point :
object (’a)
val pos : int
method get : 1int
method set : int ->
end
# let pl = new point;;
val pl : point = <obj>
# pl#get;;
- :int =0
# let p2 = pl#set 5;;
val p2 : point = <obj>
# p2#get;;
- :1int =5

a

Note the type of the set method: on an object of type ’a, it takes an
integer argument, and returns a new object of type ’a.
The color class can also be modified so that it is functional.
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# class color =
object
val color = Black
method get_color = color
method set_color color’
method reset = {< color
end;;
class color :
object (’a)
val color : color
method get_color : color
method reset : ’a
method set_color : color ->
end

{< color = color’ >}
Black >}

a

What about the colored_point example? For the reset function, we
need to invoke the reset method from both the point and color super-
classes. There is no syntax to do this directly; for this purpose, we will need
to make use of private methods, so that we can name the reset functions.

# class colored_point =
object (self)
inherit point as p
inherit color as c
method private p_reset = p#reset
method private c_reset = c#reset
method reset = self#p_reset#c_reset
end; ;
Characters 75-80:
Warning: the following methods are overriden by the inherited class:
reset
class colored_point :
object (’a)
val color : color
val pos : int
method c_reset :
method get : int
method get_color : color
method private p_reset :
method reset : ’a
method set : int -> ’a
method set_color : color -> ’a
end

a

a

The resulting object has the expected behavior.

# let pl = new colored_point;;
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val pl : colored_point
# let p2 = pl#set 7;;
val p2 : colored_point = <obj>
# let p3 = p2#set_color Blue;;
val p3 : colored_point = <obj>
# p3#get;;

- int =7

# p3#get_color;;

- : color = Blue

# p2#get_color;;

- : color = Black

# let p4 = p3#reset;;

val p4 : colored_point = <obj>
# pd#get;;

- :11int =0

# p4#get_color;;

- : color = Black

<obj>

107
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