
CIS 500 Software Foundations

Homework Assignment 1

Induction; Operational Semantics

Due: Monday, September 20, 2004, by noon

Submission instructions:

This assignment should be done together with your study group. Only one assignment should be submitted
per group, and it does not matter which group member submits the assignment. However, make sure that
all group members’ names are listed on the submission. These members will be in your group for the entire
semester, unless there are special circumstances. If you receive help from someone outside of your study
group, excluding the course staff, you must also acknowledge them on your assignment.

Solutions must be submitted electronically (in ascii, postscript, or PDF format). Follow the instructions
at http://www.seas.upenn.edu/∼cis500/homework.html.

1 Exercise Consider this simple grammar:

t ::= One

Zero

OneAnd t

ZeroAnd t

Terms t can be thought of as representing binary integers abstractly. For example, the representation of 5
(i.e., 101 in binary) is OneAnd (ZeroAnd One).

State the structural induction principle for terms t.

2 Exercise Using the big-step operational semantics for the Arith language (listed at the end of the assign-
ment), we can show that

if (if (iszero(succ 0)) then false else true) then succ(if true then 0 else (succ 0)) else 0 ⇓ succ 0

Give a derivation witnessing this fact, noting the rule applied at each step. (Hint: you might want to start
by drawing the parse tree for the term on the left-hand side first.)

3 Exercise 3.5.13 in TAPL.

4 Exercise 3.5.17 in TAPL.

5 Exercise The operational semantics of the Arith language (listed at the end of the assignment) is not total.
In other words, the following property does not hold: For all t, there exists a t′ such that t ⇓ t′.

In this problem, we will fix that by introducing a new expression to be the result of evaluating terms like
succ false. To do so, we add wrong to the syntax of the terms of Arith and introduce two new syntactic
categories.

t ::= ...

wrong

badnat ::= non-numeric normal forms

bv boolean values

wrong run-time error

badbool ::= non-boolean normal forms

nv numeric values

wrong run-time error

We also augment the large-step evaluation relation with the following new rules:

1



wrong ⇓ wrong B-Wrong

t1 ⇓ badbool

if t1 then t2 else t3 ⇓ wrong
B-IfWrong

t1 ⇓ badnat

succ t1 ⇓ wrong
B-SuccWrong

t1 ⇓ badnat

pred t1 ⇓ wrong
B-PredWrong

t1 ⇓ badnat

iszero t1 ⇓ wrong
B-IsZeroWrong

Show that the operational semantics of the language with these additions is total. Although many of the
parts of this proof may be similar to each other, for this first assignment, write each case out in full.

6 Exercise Recall the abstract syntax of “binary” numbers, from the first exercise.

t ::= One

Zero

OneAnd t

ZeroAnd t

Consider the following inductive definition of a function that returns the natural number that a term repre-
sents:

number(Zero) = 0
number(One) = 1
number(ZeroAnd t) = 2 · number(t)
number(OneAnd t) = 2 · number(t) + 1

This function can be viewed as a relation number ⊆ (Terms, N), between terms and natural numbers. Here’s
an equivalent definition of the function, using inference rules:

(Zero, 0) ∈ number

(One, 1) ∈ number

(t, i) ∈ number

(ZeroAnd t, 2 · i) ∈ number

(t, i) ∈ number

(OneAnd t, 2 · i + 1) ∈ number

1. Define a function length(.) that returns the length of a given term when viewed as a bitstring. For
example it must be that:

2



length(Zero) = 1
length(OneAnd (ZeroAnd (ZeroAnd One))) = 4

As with number(.), present length(.) in two ways, with both the inductive definition and with inference
rules.

2. Define a function zeros(.) that returns the number of zeros that a given term contains when viewed as
a bitstring. For example:

zeros(ZeroAnd (OneAnd Zero)) = 2

Similarly, provide both the inductive definition of the function as well as inference rules.

3. Using inference rules, define a relation t#t′ ⊆ (Terms, Terms) such that:

t#t′ ⇒ zeros(t) = length(t′)

There are many such relations – eg the empty relation is one of them! – but try to define the biggest
relation you can. Prove that:

t#t′ ⇒ zeros(t) = length(t′)

The following is not to be turned in. Depending on your definition of the relation above, you may or
may not be able to prove that

zeros(t) = length(t′) ⇒ t#t′

You might want to try to prove this for the relation you came up with before, using induction on the
pair of terms (t, t′). More details will be provided in the homework solutions.

7 Debriefing

1. How many hours did you spend on this assignment?

2. Would you rate it as easy, moderate, or difficult?

3. Did everyone in your study group participate?

4. How deeply do you feel you understand the material it covers (0%–100%)?

If you have any other comments, we would like to hear them; please send them cis500@cis.upenn.edu.

3



The Arith Language

Syntax

t ::=

true

false

0

succ t

pred t

iszero t

if t then t else t

Big-step operational semantics

v ⇓ v B-Value

t1 ⇓ true t2 ⇓ v

if t1 then t2 else t3 ⇓ v
B-IfTrue

t1 ⇓ false t3 ⇓ v

if t1 then t2 else t3 ⇓ v
B-IfFalse

t1 ⇓ nv

succ t1 ⇓ succ nv
B-Succ

t1 ⇓ succ nv

pred t1 ⇓ nv
B-Pred

t1 ⇓ 0

iszero t1 ⇓ true
B-IsZeroZero

t1 ⇓ succ nv

iszero t1 ⇓ false
B-IsZeroSucc

Solutions

Some solutions can be found in the back of the book. You should write out your answers to the assignment
before looking. Note, however, that the solution to 3.5.13 is incorrect there – see

http://www.cis.upenn.edu/∼bcpierce/tapl/errata.txt.

4


