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Reasoning about evaluation
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Induction principles

We’ve seen three definitions of sets and their associated induction
principles:

� Ordinary natural numbers

� Boolean terms

� Arithmetic terms

Given a set defined in BNF notation, it is not too hard to describe the
structural induction principle for that set.

For example:

� � � � � � � � � � �

� 	 
 �

� 
 � � � � � �

� � � � � � � � � � � �

What is the structural induction principle for this language?
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More induction principles

However, these are not the only sets that we’ve defined inductively so far.

We defined the semantics of the boolean and arithmetic languages using

inductively defined relations — i.e., inductively defined sets of pairs (of

terms).

These sets also have induction principles.
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Induction on evaluation

We can define an induction principle for small-step evaluation. Recall the

definition (just for booleans, for now):

� � � � � � � � � 
 � � � � � � � � � � � E-IFTRUE
� � � � � � � � � � 
 � � � � � � � � � � � E-IFFALSE

� � � �
�
�

� � � � � � � 
 � � � � � � � � � � � � �� � � � 
 � � � � � � � �

E-IF

What is the induction principle for this relation?
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Induction on evaluation

Induction principle for the evaluation relation:

Suppose 	 is a property of pairs of terms.

If we can show

� P 
 � � � � � � � � � 
 � � � � � � � � � � � � for all � � and � � , and

� P 
 � � � � � � � � � � 
 � � � � � � � � � � � � for all � � and � � , and

� P 
 � � � � � � � 
 � � � � � � � � � � � �
�
� � � � 
 � � � � � � � � � for all � � , � � ,

and � � with P 
 � � � �
�
� � ,

then we may conclude that 	 
 � � �
�
� for all � and �
� such that

� � �
� .
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Derivations

Another way to look at induction on evaluation is in terms of derivations.

A derivation records the “justification” for a particular pair of terms that

are in the evaluation relation, in the form of a tree. We’ve already seen
one example on the board last time.

Terminology:

� These trees are called derivation trees (or just derivations)

� The final statement in a derivation tree is its conclusion

� We say that a derivation is proof of its conclusion (or a witness for its

conclusion) — it records the reasoning steps that justify the
conclusion

Saying that “ � � �
� ” (i.e., “the pair 
 � � �
�
� is in the relation � ”) is

equivalent to saying “there exists an evaluation derivation 
 whose

conclusion is � � �
� .”
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Observation

Lemma: Suppose we are given a derivation 
 witnessing the pair 
 � � �
�
�

in the � relation. Then exactly one of the following holds:

1. the final rule used in 
 is E-IFTRUE and � � � � � � � � � � � 
 � � � � � � � �

and � � � � � for some � � and � � ; or

2. the final rule used in 
 is E-IFFALSE and
� � � � � � � � � � � � 
 � � � � � � � � and � � � � � for some � � and � � ; or

3. the final rule used in 
 is E-IF and � � � � � � � � � 
 � � � � � � � � and

�
� � � � � �� � � � 
 � � � � � � � � , for some � � � �
�
� � � � and � � ; moreover the

immediate subderivation of 
 witnesses � � � �
�
� .
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Induction on Derivations

We can now write proofs about evaluation “by induction on derivation

trees.”

Given an arbitrary derivation 
 with conclusion � � �
� , we assume the

desired property 	 for its immediate sub-derivations (if any) and try to

show that 	 holds for 
 itself, using a case analysis (applying the

previous lemma) of the final evaluation rule used in constructing the

derivation tree.

E.g....
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Induction on small-step evaluation

For example, let us show that small-step evaluation is deterministic.

Theorem: If � � �
� and � � �
� � then � � � � � � .

Proof: By induction on a derivation 
 of � � �
� . (Check: exactly what is

	 here?)

1. Suppose the final rule used in 
 is E-IfTrue, with

� � � � � � � � � 
 � � � � � � � � and � � � � � � � and � � � � � . Then the last
rule of the derivation of � � �
� cannot be E-IfFalse, because � � is not

� � � � � . Furthermore, the last rule cannot be E-If either, because this
rule requires that � � � �

�
� , and � � � � does not step to anything. So
the last rule can only be E-IfTrue, and � � � � � � .

2. Suppose the final rule used in 
 is E-IFFALSE, with

� � � � � � � � � � � � 
 � � � � � � � � and � � � � � . This case is similar to the
previous.
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3. Suppose the final rule used in 
 is E-IF, with

� � � � � � � � � 
 � � � � � � � � and � � � � � � �� � � � 
 � � � � � � � � , where

� � � �
�
� is witnessed by a derivation 
 � . The last rule in the

derivation of � � �
� � can only be E-If, so it must be that � � � �
� �
� . By

the inductive hypothesis, � �� � �
� �
� , from which we conclude �
� � � � � .
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What principle to use?

We’ve proven the same theorem using two different induction principles.

Q: Which one is the best one to use in a given case?

A: The one that works in that case!

For these simple languages, anything you can prove by induction on

derivations of � � �
� , you can also prove by structural induction on � .

But that will not be the case for every language.
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Well-founded induction
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A Sceptic Asks...

Question: Why are any of these induction principles true? Why should I

believe a proof that employs one?

Answer: These are all instances of a general principle called well-founded

induction.
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Well-founded induction

Let � be a well-founded relation on a set � and let P be a property. If

� � � � � � � � � � � P 
 � � � 	 P 
 � �

then � � � � � P 
 � � .

Choosing the set � and relation � determines the induction principle.
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Well-founded induction

For example, we let � � 
 and � � �

def

� � � � 
 � . In this case, we
can rewrite previous principle as:

If

� � � 
 � 
 � � � � � �P 
 � � � 	 P 
 � �

then � � � 
 � P 
 � � .

Now, by definition � is either � or � 
 � for some � :

If

� � � � � � P 
 � � � 	 P 
 � � �

� � � 
 � � � � � � 
 � � P 
 � � � 	 P 
 � 
 � �

then � � � 
 � P 
 � � .

Or, simplifying:

If P 
 � � and � � � 
 � P 
 � � 	 P 
 � 
 � � then � � � 
 � P 
 � � .
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Strong induction

If we take � to be the “strictly less than” relation � on natural numbers,
then the principle we get is strong (or “complete”) induction:

If

� � � 
 � 
 � � � � � � P 
 � � � 	 P 
 � �

then � � � 
 � P 
 � � .
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Well-founded relation

The induction principle holds only when the relation � is well-founded.

Definition: A well-founded relation is a binary relation � on a set � such
that there are no infinite descending chains � � � � � � � � � � � � � � � � .

Are the successor and � relations well-founded?
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Validity of well-founded induction

Theorem: Let � is a well-founded relation on a set � . Let P be a
property. Then � � � � � P 
 � � iff

� � � � � 
 � � � � � � P 
 � � � 	 P 
 � �

Proof: The ( 	 ) direction is trivial. We’ll show the ( � ) direction.

First, observe that any nonempty subset Q of A has a minimal element,

even if Q is infinite.

Now, suppose � P 
 � � for some � in � . There must be a minimal element

� of the set � � � � �� P 
 � � 	 . But then, � P 
 � � yet � � � � � � P 
 � � � which
is a contradiction.
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Structural induction

Well-founded induction also generalizes structural induction.

If � is the “immediate subterm” relation, then the principle we get is
structural induction for terms.

For example, in Arith, the term � � is an immediate subterm of the term
� � � � � � .

Is the immediate subterm relation well-founded?

Yes, since all terms of Arith are finite.
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Mathematical Digression

If you want to understandn the full story about induction and inductively

know defined relations, check out the beginning of Chapter 21 in TAPL.
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Termination of evaluation
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Termination of evaluation

Theorem: For every � there is some normal form �
� such that � � � � � .

How can we prove it??
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An Inductive Definition of a Function

We can define the size of a term with the following relation:

size 
 � � � � � � �

size 
 � � � � � � � �

size 
 � � � �

size 
 � � � � � � � � size 
 � � � 
 �

size 
 � � � � � � � � size 
 � � � 
 �

size 
 � � � � � 	 � � � � size 
 � � � 
 �

size 
 � � � � � � � 
 � � � � � � � � � � size 
 � � � 
 size 
 � � � 
 size 
 � � � 
 �

Note: this is yet more shorthand. How would we write this definition with

inference rules?
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Induction on Derivations — Another Example

Theorem: If � � � �
� , then size 
 � � � size 
 � � � .

Proof: By induction on a derivation 
 of � � � �
� .

1. Suppose the final rule used in 
 is E-IFTRUE, with

� � � � � � � � � � � 
 � � � � � � � � and � � � � � . Then the result is immediate

from the definition of size.

2. Suppose the final rule used in 
 is E-IFFALSE, with

� � � � � � � � � � � � 
 � � � � � � � � and � � � � � . Then the result is again

immediate from the definition of size.

3. Suppose the final rule used in 
 is E-IF, with

� � � � � � � � � 
 � � � � � � � � and � � � � � � �� � � � 
 � � � � � � � � , where


 � � � �
�
� � � � � is witnessed by a derivation 
 � . By the induction

hypothesis, size 
 � � � � size 
 � �� � . But then, by the definition of size, we
have size 
 � � � size 
 � � � .
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Termination of evaluation

Theorem: For every � there is some normal form �
� such that � � � � � � .

Proof:

� First, recall that single-step evaluation strictly reduces the size of the
term:

if � � � �
� , then size 
 � � � size 
 � � �

� Now, assume (for a contradiction) that

� � � � � � � � � � � � � � � � � �

is an infinite-length sequence such that

� � � � � � � � � � � � � � � � � � � � � � � ,

� Then

size 
 � � � � size 
 � � � � size 
 � � � � size 
 � � � � size 
 � � � � � � �

is an infinite, strictly decreasing, sequence of natural numbers.

� But such a sequence cannot exist — contradiction!
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Termination Proofs

Most termination proofs have the same basic form:

Theorem: The relation � � � � � is terminating — i.e., there are
no infinite sequences � � , � � , � 	 , etc. such that 
 � � � � � 
 � � � � for
each � .

Proof:

1. Choose

� a well-founded set 
 � � � � — i.e., a set � with a partial order

� such that there are no infinite descending chains

� � � � � � � 	 � � � � in �

� a function 
 from � to �

2. Show 
 
 � � � 
 
 � � for all 
 � � � � � �

3. Conclude that there are no infinite sequences � � , � � , � 	 , etc.
such that 
 � � � � � 
 � � � � for each � , since, if there were, we
could construct an infinite descending chain in � .
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