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/ Induction principles \

We’ve seen three definitions of sets and their associated induction
principles:

¢ Ordinary natural numbers
¢ Boolean terms

¢ Arithmetic terms

Given a set defined in BNF notation, it is not too hard to describe the
structural induction principle for that set.

For example:
t ::= brillig
tove

snicker t

gyre t gimble t

\What is the structural induction principle for this language? /
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/ More induction principles \

However, these are not the only sets that we’ve defined inductively so far.

We defined the semantics of the boolean and arithmetic languages using
inductively defined relations — i.e., inductively defined sets of pairs (of
terms).

These sets also have induction principles.

N /
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/ Induction on evaluation \

We can define an induction principle for small-step evaluation. Recall the
definition (just for booleans, for now):

if true then t, else ts — to E-IFTRUE

if false then t, else t3 — t3 E-IFFALSE
t; — t]

! L E-IF

if t; then t; else t3 — if t{ then t, else t3

\What is the induction principle for this relation? /
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/ Induction on evaluation

Induction principle for the evaluation relation:

Suppose P is a property of pairs of terms.

If we can show

¢ P(if true then t, else t3, ty) for all t, and t3, and
¢ P(if false then t, else t3, ts) for all t; and ts;, and

¢ P(if t; then t, else t3, if t{ then t, else ts) for all ti, to,
and ts with P(t:, t{),

then we may conclude that P(t,t’) for all t and t’ such that
t —t'.

N
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/ Derivations \

Another way to look at induction on evaluation is in terms of derivations.

A derivation records the “justification” for a particular pair of terms that
are in the evaluation relation, in the form of a tree. We’ve already seen
one example on the board last time.

Terminology:

¢ These trees are called derivation trees (or just derivations)
¢ The final statement in a derivation tree is its conclusion

¢ We say that a derivation is proof of its conclusion (or a witness for its
conclusion) — it records the reasoning steps that justify the
conclusion

AL

Saying that “t — t’” (i.e., “the pair (t,t’) is in the relation —7) is
equivalent to saying “there exists an evaluation derivation D whose

Qonclusion st — t’.” /
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/ Observation \

Lemma: Suppose we are given a derivation D witnessing the pair (t,t’)
in the — relation. Then exactly one of the following holds:

1. the final rule used in D is E-IFTRUE and t = if true then t, else ts
and t’ = t, for some t, and ts; or

2. the final rule used in D is E-IFFALSE and
t = if false then t, else t3 and t’ = t; for some t, and ts;; or

3. the final rule used in D is E-IF and t = if t; then t, else t; and
t’ = if t{ then t, else ts, for some t{, t{, t, and ts; moreover the
immediate subderivation of D witnesses t; — t;.

N /
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/ Induction on Derivations \

We can now write proofs about evaluation “by induction on derivation
trees.”

Given an arbitrary derivation D with conclusion t — t’, we assume the
desired property P for its immediate sub-derivations (if any) and try to
show that P holds for D itself, using a case analysis (applying the
previous lemma) of the final evaluation rule used in constructing the
derivation tree.

K E.g.y
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/ Induction on small-step evaluation \

For example, let us show that small-step evaluation is deterministic.
Theorem: If t -t and t — t” then t’' =t".

Proof: By induction on a derivation D of t — t’. (Check: exactly what is
P here?)

1. Suppose the final rule used in D is E-IfTrue, with
t = if t; then t, else t3; and t; = true and t’ = t,. Then the last
rule of the derivation of t — t’ cannot be E-IfFalse, because t; is not
false. Furthermore, the last rule cannot be E-If either, because this
rule requires that t; — t{, and true does not step to anything. So
the last rule can only be E-IfTrue, and t’ =t".

2. Suppose the final rule used in D is E-IFFALSE, with
t = if false then t, else t3; and t’ = ts. This case is similar to the
previous.

N /
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/3. Suppose the final rule used in D is E-IF, with \
t = if t; then t, else t; and t’ = if t{ then t, else ts;, where

t; — ty is witnessed by a derivation D;. The last rule in the
derivation of t — t” can only be E-If, so it must be that t; — t{’. By
the inductive hypothesis, t| = t{’, from which we conclude t’ =t".

N /
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/ What principle to use? \

We’'ve proven the same theorem using two different induction principles.
Q: Which one is the best one to use in a given case?
A: The one that works in that casel

For these simple languages, anything you can prove by induction on
derivations of t — t’, you can also prove by structural induction on t.
But that will not be the case for every language.

N )
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Well-founded induction

N
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/ A Sceptic AskKs... \

Question: Why are any of these induction principles true? Why should |
believe a proof that employs one?

Answer:. These are all instances of a general principle called well-founded
induction.

N /
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/ Well-founded induction \

Let < be a well-founded relation on a set A and let P be a property. If
YVae A. [Vb<a. P(b)l= P(a)

then Va € A. P(a).

Choosing the set A and relation < determines the induction principle.

N /
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/ Well-founded induction \

For example, we let A= AN and n < m o m=n -+ 1. In this case, we

can rewrite previous principle as:

If
Va € N.([Vb < a.P(b)] = P(a)

then Va € N .P(a).
Now, by definition a is either 0 or i + 1 for some i.

If
[Vb < 0.P(b)] = P(O)A

Vie NIVb <i+1.P(b)]=PH+1)
then Va € N .P(a).
Or, simplifying:
\ If P(0) and Vi € N.P(i) = P(i + 1) then Va € N .P(a). /
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/ Strong induction \

If we take < to be the “strictly less than” relation < on natural numbers,
then the principle we get is strong (or “complete”) induction:

If
Va € N.([Vb< a.P(b)] = P(a)

then Ya € N.P(a).

N /
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/ Well-founded relation \

The induction principle holds only when the relation < is well-founded.

Definition: A well-founded relation is a binary relation < on a set A such
that there are no infinite descending chains - < a; < -+ < a1 < Qo.

Are the successor and > relations well-founded?

N /
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/ Validity of well-founded induction \

Theorem: Let < is a well-founded relation on a set A. Let P be a
property. Then Va € A.P(a) iff

Va € A.([Vb < a.P(b)] = P(a)

Proof: The (=) direction is trivial. We’ll show the (<) direction.

First, observe that any nonempty subset Q of A has a minimal element,
even if Q is infinite.

Now, suppose —P(a) for some a in A. There must be a minimal element
m of the set {a € A|—P(a)}. But then, —P(m) yet [Vb < m.P(b)] which
is a contradiction.

N /
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/ Structural induction

Well-founded induction also generalizes structural induction.

If < is the “immediate subterm” relation, then the principle we get is
structural induction for terms.

For example, in Arith, the term t; is an immediate subterm of the term

succC t1.
Is the immediate subterm relation well-founded?

Yes, since all terms of Arith are finite.

N

~
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/ Mathematical Digression \

If you want to understandn the full story about induction and inductively
Know defined relations, check out the beginning of Chapter 21 in TAPL.

N /
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Termination of evaluation
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/ Termination of evaluation \

Theorem: For every t there is some normal form t’ such that t —* t’.

\How can we prove it?? /
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/ An Inductive Definition of a Function \

We can define the size of a term with the following relation:

size(true) = 1]

size(false) = 1

size(0) = 1

size(succ t;) = size(ty) + 1

size(pred t1) = size(t1) +1

size(iszero ti) = size(t1) + 1

size(if t; then t; else t3) = size(t1) + size(ta) + size(ts) + 1

Note: this is yet more shorthand. How would we write this definition with

inference rules? /
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/ Induction on Derivations — Another Example \

Theorem: If t — t’, then size(t) > size(t’).

Proof: By induction on a derivation D of t — t’.

1. Suppose the final rule used in D is E-IFTRUE, with
t = if true then t, else ts and t’ = t,. Then the result is immediate
from the definition of size.

2. Suppose the final rule used in D is E-IFFALSE, with
t = if false then t, else t3 and t’ = ts. Then the result is again
immediate from the definition of size.

3. Suppose the final rule used in D is E-IF, with
t =if t; then t, else t; and t’ = if t{ then t, else ts, where
(t1, t{) €E— is witnessed by a derivation D;. By the induction
hypothesis, size(ti) > size(t{). But then, by the definition of size, we
have size(t) > size(t’).

N /
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/ Termination of evaluation \

Theorem: For every t there is some normal form t’ such that t —" t’.

Proof:

¢ First, recall that single-step evaluation strictly reduces the size of the
term:

if t — t’, then size(t) > size(t’)
¢ Now, assume (for a contradiction) that
to, t1, to, ts, ta, ...
is an infinite-length sequence such that

to > £1 > to > 3 > g — ¢ oo,

¢ Then
size(to), size(ty), size(t.), size(ts), size(ta), ...
is an infinite, strictly decreasing, sequence of natural numbers.

K‘ But such a sequence cannot exist — contradiction! /
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/ Termination Proofs

Most termination proofs have the same basic form:

Theorem: The relation R C X X X is terminating — i.e., there are
no infinite sequences xo, x1, X2, etc. such that (xi,xi+1) € R for
each i.

Proof:

1. Choose

¢ a well-founded set (W,<) — i.e., a set W with a partial order
< such that there are no infinite descending chains
Wo > W1 >W2 >... in W

¢ a function f from X to W

2. Show f(x) > f(y) for all (x,y) € R

3. Conclude that there are no infinite sequences xo, x1, X2, etc.
such that (xi,xi+1) € R for each i, since, if there were, we
\ could construct an infinite descending chain in W.

~

/
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