

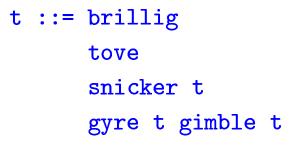
Induction principles

We've seen three definitions of sets and their associated induction principles:

- Ordinary natural numbers
- Boolean terms
- Arithmetic terms

Given a set defined in BNF notation, it is not too hard to describe the structural induction principle for that set.

For example:



What is the structural induction principle for this language?

More induction principles

However, these are not the only sets that we've defined inductively so far.

We defined the semantics of the boolean and arithmetic languages using inductively defined relations — i.e., inductively defined sets of pairs (of terms).

These sets also have induction principles.

Induction on evaluation

We can define an induction principle for small-step evaluation. Recall the definition (just for booleans, for now):

if true then t_2 else $t_3 \rightarrow t_2$ E-IFTRUE

if false then t_2 else $t_3 \rightarrow t_3$ E-IFFALSE

$$\frac{\texttt{t}_1 \to \texttt{t}_1'}{\texttt{if } \texttt{t}_1 \texttt{ then } \texttt{t}_2 \texttt{ else } \texttt{t}_3 \to \texttt{if } \texttt{t}_1' \texttt{ then } \texttt{t}_2 \texttt{ else } \texttt{t}_3} \qquad \qquad \texttt{E-IF}$$

What is the induction principle for this relation?

Induction on evaluation

Induction principle for the evaluation relation:

Suppose P is a property of pairs of terms.

If we can show

- $\mathbf{P}($ if true then t_2 else t_3 , $t_2)$ for all t_2 and t_3 , and
- \blacklozenge P(if false then t_2 else t_3, t_3) for all t_2 and t_3, and
- $P(\text{if } t_1 \text{ then } t_2 \text{ else } t_3, \text{ if } t'_1 \text{ then } t_2 \text{ else } t_3)$ for all t_1 , t_2 , and t_3 with $P(t_1, t'_1)$,

then we may conclude that $P(t,t^{\,\prime})$ for all t and $t^{\,\prime}$ such that $t \to t^{\,\prime}.$

Derivations

Another way to look at induction on evaluation is in terms of derivations.

A derivation records the "justification" for a particular pair of terms that are in the evaluation relation, in the form of a tree. We've already seen one example on the board last time.

Terminology:

- These trees are called derivation trees (or just derivations)
- ♦ The final statement in a derivation tree is its conclusion
- We say that a derivation is proof of its conclusion (or a witness for its conclusion) it records the reasoning steps that justify the conclusion

Saying that "t \rightarrow t'" (i.e., "the pair (t, t') is in the relation \rightarrow ") is equivalent to saying "there exists an evaluation derivation \mathcal{D} whose conclusion is t \rightarrow t'."

Observation

Lemma: Suppose we are given a derivation \mathcal{D} witnessing the pair (t, t') in the \rightarrow relation. Then exactly one of the following holds:

- 1. the final rule used in \mathcal{D} is E-IFTRUE and t = if true then t_2 else t_3 and $t' = t_2$ for some t_2 and t_3 ; or
- 2. the final rule used in \mathcal{D} is E-IFFALSE and $t = if false then t_2 else t_3$ and $t' = t_3$ for some t_2 and t_3 ; or
- 3. the final rule used in \mathcal{D} is E-IF and $t = if t_1$ then t_2 else t_3 and $t' = if t'_1$ then t_2 else t_3 , for some t_1, t'_1, t_2 and t_3 ; moreover the immediate subderivation of \mathcal{D} witnesses $t_1 \rightarrow t'_1$.

Induction on Derivations

We can now write proofs about evaluation "by induction on derivation trees."

Given an arbitrary derivation \mathcal{D} with conclusion $t \to t'$, we assume the desired property P for its immediate sub-derivations (if any) and try to show that P holds for \mathcal{D} itself, using a case analysis (applying the previous lemma) of the final evaluation rule used in constructing the derivation tree.

Induction on small-step evaluation

For example, let us show that small-step evaluation is deterministic.

```
Theorem: If t \to t' and t \to t'' then t' = t''.
```

Proof: By induction on a derivation \mathcal{D} of $t \to t'$. (Check: exactly what is P here?)

1. Suppose the final rule used in \mathcal{D} is E-lfTrue, with t = if t, then to else to and $t_i = true$ and $t' = t_0$. Then

 $t = if t_1$ then t_2 else t_3 and $t_1 = true$ and $t' = t_2$. Then the last rule of the derivation of $t \to t'$ cannot be E-IfFalse, because t_1 is not false. Furthermore, the last rule cannot be E-If either, because this rule requires that $t_1 \to t'_1$, and true does not step to anything. So the last rule can only be E-IfTrue, and t' = t''.

2. Suppose the final rule used in \mathcal{D} is E-IFFALSE, with $t = if false then t_2 else t_3$ and $t' = t_3$. This case is similar to the previous.

3. Suppose the final rule used in \mathcal{D} is E-IF, with

 $t = if t_1$ then t_2 else t_3 and $t' = if t'_1$ then t_2 else t_3 , where $t_1 \rightarrow t'_1$ is witnessed by a derivation \mathcal{D}_1 . The last rule in the derivation of $t \rightarrow t''$ can only be E-lf, so it must be that $t_1 \rightarrow t''_1$. By the inductive hypothesis, $t'_1 = t''_1$, from which we conclude t' = t''.

What principle to use?

We've proven the same theorem using two different induction principles.

Q: Which one is the best one to use in a given case?

A: The one that works in that case!

For these simple languages, anything you can prove by induction on derivations of $t \rightarrow t'$, you can also prove by structural induction on t. But that will not be the case for every language.

Well-founded induction

A Sceptic Asks...

Question: Why are any of these induction principles true? Why should I believe a proof that employs one?

Answer: These are all instances of a general principle called well-founded induction.

Well-founded induction

Let \prec be a well-founded relation on a set A and let P be a property. If

```
\forall a \in A. \quad [\forall b \prec a. P(b)] \Rightarrow P(a)
```

then $\forall a \in A$. P(a).

Choosing the set A and relation \prec determines the induction principle.

Well-founded induction

For example, we let A = N and $n \prec m \stackrel{\text{def}}{=} m = n + 1$. In this case, we can rewrite previous principle as:

```
\forall a \in \mathcal{N}.([\forall b \prec a.P(b)] \Rightarrow P(a))
then \forall a \in \mathcal{N}.P(a).
```

```
Now, by definition a is either 0 or i + 1 for some i:
     lf
                            [\forall b \prec 0.P(b)] \Rightarrow P(0) \land
                            \forall i \in \mathcal{N}. [\forall b \prec i + 1.P(b)] \Rightarrow P(i+1)
     then \forall a \in \mathcal{N}.P(a).
Or, simplifying:
```

```
If P(0) and \forall i \in \mathcal{N}.P(i) \Rightarrow P(i+1) then \forall a \in \mathcal{N}.P(a).
```

lf

Strong induction

If we take \prec to be the "strictly less than" relation \lt on natural numbers, then the principle we get is strong (or "complete") induction:

```
\forall a \in \mathcal{N}. ([\forall b < a.\mathsf{P}(b)] \Rightarrow \mathsf{P}(a)
```

then $\forall a \in \mathcal{N}.P(a)$.

lf

Well-founded relation

The induction principle holds only when the relation \prec is well-founded.

Definition: A well-founded relation is a binary relation \prec on a set A such that there are no infinite descending chains $\cdots \prec a_i \prec \cdots \prec a_1 \prec a_0$.

Are the successor and > relations well-founded?

Validity of well-founded induction

Theorem: Let \prec is a well-founded relation on a set A. Let P be a property. Then $\forall a \in A.P(a)$ iff

```
\forall a \in A.([\forall b \prec a.P(b)] \Rightarrow P(a)
```

Proof: The (\Rightarrow) direction is trivial. We'll show the (\Leftarrow) direction.

First, observe that any nonempty subset Q of A has a minimal element, even if Q is infinite.

Now, suppose $\neg P(a)$ for some a in A. There must be a minimal element m of the set $\{a \in A | \neg P(a)\}$. But then, $\neg P(m)$ yet $[\forall b \prec m.P(b)]$ which is a contradiction.

Structural induction

Well-founded induction also generalizes structural induction.

If \prec is the "immediate subterm" relation, then the principle we get is structural induction for terms.

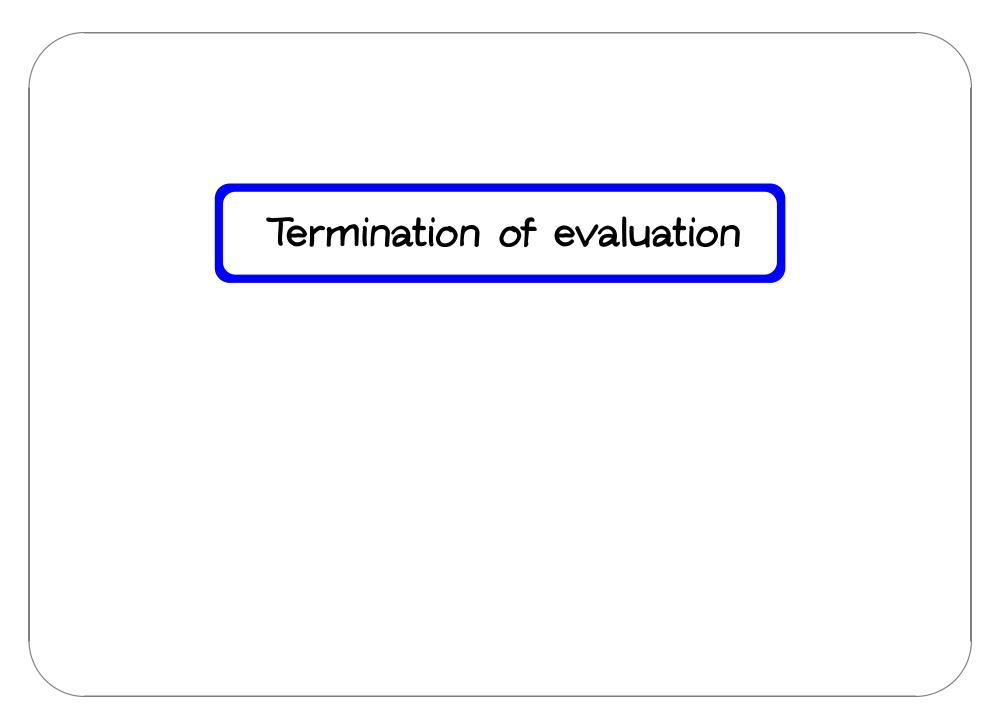
For example, in Arith, the term t_1 is an immediate subterm of the term succ t_1 .

Is the immediate subterm relation well-founded?

Yes, since all terms of Arith are finite.

Mathematical Digression

If you want to understandn the full story about induction and inductively know defined relations, check out the beginning of Chapter 21 in TAPL.



Termination of evaluation

Theorem: For every t there is some normal form t' such that $t \rightarrow^* t'$.

How can we prove it??

An Inductive Definition of a Function

We can define the size of a term with the following relation:

<pre>size(true)</pre>	=	1
<pre>size(false)</pre>	—	1
size(0)	—	1
$size(succ t_1)$	—	$size(t_1) + 1$
$size(pred t_1)$	—	$size(t_1) + 1$
$size(iszero t_1)$	—	$size(t_1) + 1$
$size(if t_1 then t_2 else t_3)$	=	$size(t_1) + size(t_2) + size(t_3) + 1$

Note: this is yet more shorthand. How would we write this definition with inference rules?

Induction on Derivations — Another Example

Theorem: If $t \rightarrow t'$, then size(t) > size(t').

Proof: By induction on a derivation \mathcal{D} of $t \longrightarrow t'$.

- 1. Suppose the final rule used in \mathcal{D} is E-IFTRUE, with $t = if true then t_2 else t_3$ and $t' = t_2$. Then the result is immediate from the definition of size.
- 2. Suppose the final rule used in \mathcal{D} is E-IFFALSE, with $t = if false then t_2 else t_3$ and $t' = t_3$. Then the result is again immediate from the definition of size.
- 3. Suppose the final rule used in \mathcal{D} is E-IF, with $t = if t_1$ then t_2 else t_3 and $t' = if t_1'$ then t_2 else t_3 , where $(t_1, t_1') \in \longrightarrow$ is witnessed by a derivation \mathcal{D}_1 . By the induction hypothesis, size $(t_1) > size(t_1')$. But then, by the definition of size, we have size(t) > size(t').

Termination of evaluation

Theorem: For every t there is some normal form t' such that $t \longrightarrow^* t'$. Proof:

First, recall that single-step evaluation strictly reduces the size of the term:

if $t \rightarrow t'$, then size(t) > size(t')

Now, assume (for a contradiction) that

 $t_0, t_1, t_2, t_3, t_4, \ldots$

is an infinite-length sequence such that

 $t_0 \longrightarrow t_1 \longrightarrow t_2 \longrightarrow t_3 \longrightarrow t_4 \longrightarrow \cdots,$

Then

 $size(t_0)$, $size(t_1)$, $size(t_2)$, $size(t_3)$, $size(t_4)$, ...

is an infinite, strictly decreasing, sequence of natural numbers.

♦ But such a sequence cannot exist — contradiction!

Termination Proofs

Most termination proofs have the same basic form:

Theorem: The relation $R \subseteq X \times X$ is terminating — i.e., there are no infinite sequences x_0 , x_1 , x_2 , etc. such that $(x_i, x_{i+1}) \in R$ for each i.

Proof:

- 1. Choose
 - ♦ a well-founded set (W,<) i.e., a set W with a partial order
 < such that there are no infinite descending chains
 w₀ > w₁ > w₂ > ... in W
 - \blacklozenge a function f from X to W
- 2. Show f(x) > f(y) for all $(x, y) \in R$
- 3. Conclude that there are no infinite sequences x_0 , x_1 , x_2 , etc. such that $(x_i, x_{i+1}) \in \mathbb{R}$ for each *i*, since, if there were, we could construct an infinite descending chain in W.